This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| Assertion | iscyggen | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 4 | simpl | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ ) → 𝑥 = 𝑋 ) | |
| 5 | 4 | oveq2d | ⊢ ( ( 𝑥 = 𝑋 ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑥 ) = ( 𝑛 · 𝑋 ) ) |
| 6 | 5 | mpteq2dva | ⊢ ( 𝑥 = 𝑋 → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) |
| 7 | 6 | rneqd | ⊢ ( 𝑥 = 𝑋 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) |
| 8 | 7 | eqeq1d | ⊢ ( 𝑥 = 𝑋 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 ↔ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 9 | 8 3 | elrab2 | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |