This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Sum of group multiples, generalized to ZZ . (Contributed by Mario Carneiro, 13-Dec-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | mulgnndir.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| mulgnndir.t | ⊢ · = ( .g ‘ 𝐺 ) | ||
| mulgnndir.p | ⊢ + = ( +g ‘ 𝐺 ) | ||
| Assertion | mulgdir | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | mulgnndir.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | mulgnndir.t | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | mulgnndir.p | ⊢ + = ( +g ‘ 𝐺 ) | |
| 4 | 1 2 3 | mulgdirlem | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 5 | 4 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 6 | simpll | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝐺 ∈ Grp ) | |
| 7 | simpr2 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑁 ∈ ℤ ) | |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝑁 ∈ ℤ ) |
| 9 | 8 | znegcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - 𝑁 ∈ ℤ ) |
| 10 | simpr1 | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → 𝑀 ∈ ℤ ) | |
| 11 | 10 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝑀 ∈ ℤ ) |
| 12 | 11 | znegcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - 𝑀 ∈ ℤ ) |
| 13 | simplr3 | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝑋 ∈ 𝐵 ) | |
| 14 | 11 | zcnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝑀 ∈ ℂ ) |
| 15 | 14 | negcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - 𝑀 ∈ ℂ ) |
| 16 | 8 | zcnd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → 𝑁 ∈ ℂ ) |
| 17 | 16 | negcld | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - 𝑁 ∈ ℂ ) |
| 18 | 14 16 | negdid | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) = ( - 𝑀 + - 𝑁 ) ) |
| 19 | 15 17 18 | comraddd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) = ( - 𝑁 + - 𝑀 ) ) |
| 20 | simpr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) | |
| 21 | 19 20 | eqeltrrd | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( - 𝑁 + - 𝑀 ) ∈ ℕ0 ) |
| 22 | 1 2 3 | mulgdirlem | ⊢ ( ( 𝐺 ∈ Grp ∧ ( - 𝑁 ∈ ℤ ∧ - 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ∧ ( - 𝑁 + - 𝑀 ) ∈ ℕ0 ) → ( ( - 𝑁 + - 𝑀 ) · 𝑋 ) = ( ( - 𝑁 · 𝑋 ) + ( - 𝑀 · 𝑋 ) ) ) |
| 23 | 6 9 12 13 21 22 | syl131anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( - 𝑁 + - 𝑀 ) · 𝑋 ) = ( ( - 𝑁 · 𝑋 ) + ( - 𝑀 · 𝑋 ) ) ) |
| 24 | 19 | oveq1d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( - ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( - 𝑁 + - 𝑀 ) · 𝑋 ) ) |
| 25 | 10 7 | zaddcld | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 26 | 25 | adantr | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝑀 + 𝑁 ) ∈ ℤ ) |
| 27 | eqid | ⊢ ( invg ‘ 𝐺 ) = ( invg ‘ 𝐺 ) | |
| 28 | 1 2 27 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) ) |
| 29 | 6 26 13 28 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( - ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) ) |
| 30 | 24 29 | eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( - 𝑁 + - 𝑀 ) · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) ) |
| 31 | 1 2 27 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑁 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) ) |
| 32 | 6 8 13 31 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( - 𝑁 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) ) |
| 33 | 1 2 27 | mulgneg | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( - 𝑀 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
| 34 | 6 11 13 33 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( - 𝑀 · 𝑋 ) = ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) |
| 35 | 32 34 | oveq12d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( - 𝑁 · 𝑋 ) + ( - 𝑀 · 𝑋 ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) ) |
| 36 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑀 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 37 | 6 11 13 36 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝑀 · 𝑋 ) ∈ 𝐵 ) |
| 38 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 39 | 6 8 13 38 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( 𝑁 · 𝑋 ) ∈ 𝐵 ) |
| 40 | 1 3 27 | grpinvadd | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) ) |
| 41 | 6 37 39 40 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) = ( ( ( invg ‘ 𝐺 ) ‘ ( 𝑁 · 𝑋 ) ) + ( ( invg ‘ 𝐺 ) ‘ ( 𝑀 · 𝑋 ) ) ) ) |
| 42 | 35 41 | eqtr4d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( - 𝑁 · 𝑋 ) + ( - 𝑀 · 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) ) |
| 43 | 23 30 42 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) ) |
| 44 | 43 | fveq2d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) ) = ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) ) ) |
| 45 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 + 𝑁 ) ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) ∈ 𝐵 ) |
| 46 | 6 26 13 45 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) ∈ 𝐵 ) |
| 47 | 1 27 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑀 + 𝑁 ) · 𝑋 ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) ) = ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) |
| 48 | 6 46 47 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) ) = ( ( 𝑀 + 𝑁 ) · 𝑋 ) ) |
| 49 | 1 3 | grpcl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 · 𝑋 ) ∈ 𝐵 ∧ ( 𝑁 · 𝑋 ) ∈ 𝐵 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ∈ 𝐵 ) |
| 50 | 6 37 39 49 | syl3anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ∈ 𝐵 ) |
| 51 | 1 27 | grpinvinv | ⊢ ( ( 𝐺 ∈ Grp ∧ ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ∈ 𝐵 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 52 | 6 50 51 | syl2anc | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( invg ‘ 𝐺 ) ‘ ( ( invg ‘ 𝐺 ) ‘ ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 53 | 44 48 52 | 3eqtr3d | ⊢ ( ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) ∧ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |
| 54 | elznn0 | ⊢ ( ( 𝑀 + 𝑁 ) ∈ ℤ ↔ ( ( 𝑀 + 𝑁 ) ∈ ℝ ∧ ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) ) | |
| 55 | 54 | simprbi | ⊢ ( ( 𝑀 + 𝑁 ) ∈ ℤ → ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) |
| 56 | 25 55 | syl | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + 𝑁 ) ∈ ℕ0 ∨ - ( 𝑀 + 𝑁 ) ∈ ℕ0 ) ) |
| 57 | 5 53 56 | mpjaodan | ⊢ ( ( 𝐺 ∈ Grp ∧ ( 𝑀 ∈ ℤ ∧ 𝑁 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) ) → ( ( 𝑀 + 𝑁 ) · 𝑋 ) = ( ( 𝑀 · 𝑋 ) + ( 𝑁 · 𝑋 ) ) ) |