This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Z/nZ is a commutative ring. (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | zncrng.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| Assertion | zncrng | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | zncrng.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | nn0z | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℤ ) | |
| 3 | eqid | ⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) | |
| 4 | eqid | ⊢ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) | |
| 5 | 3 4 | zncrng2 | ⊢ ( 𝑁 ∈ ℤ → ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ∈ CRing ) |
| 6 | 2 5 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ∈ CRing ) |
| 7 | eqidd | ⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) | |
| 8 | 3 4 1 | znbas2 | ⊢ ( 𝑁 ∈ ℕ0 → ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( Base ‘ 𝑌 ) ) |
| 9 | 3 4 1 | znadd | ⊢ ( 𝑁 ∈ ℕ0 → ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( +g ‘ 𝑌 ) ) |
| 10 | 9 | oveqdr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) ) → ( 𝑥 ( +g ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) 𝑦 ) = ( 𝑥 ( +g ‘ 𝑌 ) 𝑦 ) ) |
| 11 | 3 4 1 | znmul | ⊢ ( 𝑁 ∈ ℕ0 → ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) = ( .r ‘ 𝑌 ) ) |
| 12 | 11 | oveqdr | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ ( 𝑥 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ∧ 𝑦 ∈ ( Base ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) ) ) → ( 𝑥 ( .r ‘ ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) 𝑦 ) = ( 𝑥 ( .r ‘ 𝑌 ) 𝑦 ) ) |
| 13 | 7 8 10 12 | crngpropd | ⊢ ( 𝑁 ∈ ℕ0 → ( ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ∈ CRing ↔ 𝑌 ∈ CRing ) ) |
| 14 | 6 13 | mpbid | ⊢ ( 𝑁 ∈ ℕ0 → 𝑌 ∈ CRing ) |