This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ZZ ring homomorphism is a surjection onto Z/nZ . (Contributed by Mario Carneiro, 15-Jun-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | znzrhfo.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| znzrhfo.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | ||
| znzrhfo.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| Assertion | znzrhfo | ⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | znzrhfo.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 2 | znzrhfo.b | ⊢ 𝐵 = ( Base ‘ 𝑌 ) | |
| 3 | znzrhfo.2 | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 4 | eqidd | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( ℤring /s ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) | |
| 5 | zringbas | ⊢ ℤ = ( Base ‘ ℤring ) | |
| 6 | 5 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ℤ = ( Base ‘ ℤring ) ) |
| 7 | eqid | ⊢ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) | |
| 8 | ovexd | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ∈ V ) | |
| 9 | zringring | ⊢ ℤring ∈ Ring | |
| 10 | 9 | a1i | ⊢ ( 𝑁 ∈ ℕ0 → ℤring ∈ Ring ) |
| 11 | 4 6 7 8 10 | quslem | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
| 12 | eqid | ⊢ ( RSpan ‘ ℤring ) = ( RSpan ‘ ℤring ) | |
| 13 | eqid | ⊢ ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) = ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) | |
| 14 | 12 1 13 | znbas | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = ( Base ‘ 𝑌 ) ) |
| 15 | 14 2 | eqtr4di | ⊢ ( 𝑁 ∈ ℕ0 → ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = 𝐵 ) |
| 16 | foeq3 | ⊢ ( ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) = 𝐵 → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) ) | |
| 17 | 15 16 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ ( ℤ / ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) ) |
| 18 | 11 17 | mpbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) |
| 19 | 12 13 1 3 | znzrh2 | ⊢ ( 𝑁 ∈ ℕ0 → 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) ) |
| 20 | foeq1 | ⊢ ( 𝐿 = ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) → ( 𝐿 : ℤ –onto→ 𝐵 ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) ) | |
| 21 | 19 20 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝐿 : ℤ –onto→ 𝐵 ↔ ( 𝑥 ∈ ℤ ↦ [ 𝑥 ] ( ℤring ~QG ( ( RSpan ‘ ℤring ) ‘ { 𝑁 } ) ) ) : ℤ –onto→ 𝐵 ) ) |
| 22 | 18 21 | mpbird | ⊢ ( 𝑁 ∈ ℕ0 → 𝐿 : ℤ –onto→ 𝐵 ) |