This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cygzn . (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygzn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cygzn.n | ⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | ||
| cygzn.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| cygzn.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cygzn.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| cygzn.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| cygzn.g | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) | ||
| cygzn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) | ||
| Assertion | cygznlem1 | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝐾 ) = ( 𝐿 ‘ 𝑀 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cygzn.n | ⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | |
| 3 | cygzn.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 4 | cygzn.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 5 | cygzn.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 6 | cygzn.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 7 | cygzn.g | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) | |
| 8 | cygzn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) | |
| 9 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 10 | 9 | adantl | ⊢ ( ( 𝜑 ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) |
| 11 | 0nn0 | ⊢ 0 ∈ ℕ0 | |
| 12 | 11 | a1i | ⊢ ( ( 𝜑 ∧ ¬ 𝐵 ∈ Fin ) → 0 ∈ ℕ0 ) |
| 13 | 10 12 | ifclda | ⊢ ( 𝜑 → if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ∈ ℕ0 ) |
| 14 | 2 13 | eqeltrid | ⊢ ( 𝜑 → 𝑁 ∈ ℕ0 ) |
| 15 | 14 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑁 ∈ ℕ0 ) |
| 16 | simprl | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝐾 ∈ ℤ ) | |
| 17 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑀 ∈ ℤ ) | |
| 18 | 3 5 | zndvds | ⊢ ( ( 𝑁 ∈ ℕ0 ∧ 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) → ( ( 𝐿 ‘ 𝐾 ) = ( 𝐿 ‘ 𝑀 ) ↔ 𝑁 ∥ ( 𝐾 − 𝑀 ) ) ) |
| 19 | 15 16 17 18 | syl3anc | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝐾 ) = ( 𝐿 ‘ 𝑀 ) ↔ 𝑁 ∥ ( 𝐾 − 𝑀 ) ) ) |
| 20 | cyggrp | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ∈ Grp ) | |
| 21 | 7 20 | syl | ⊢ ( 𝜑 → 𝐺 ∈ Grp ) |
| 22 | eqid | ⊢ ( od ‘ 𝐺 ) = ( od ‘ 𝐺 ) | |
| 23 | 1 4 6 22 | cyggenod2 | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐸 ) → ( ( od ‘ 𝐺 ) ‘ 𝑋 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| 24 | 21 8 23 | syl2anc | ⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝑋 ) = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) ) |
| 25 | 24 2 | eqtr4di | ⊢ ( 𝜑 → ( ( od ‘ 𝐺 ) ‘ 𝑋 ) = 𝑁 ) |
| 26 | 25 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( od ‘ 𝐺 ) ‘ 𝑋 ) = 𝑁 ) |
| 27 | 26 | breq1d | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑋 ) ∥ ( 𝐾 − 𝑀 ) ↔ 𝑁 ∥ ( 𝐾 − 𝑀 ) ) ) |
| 28 | 21 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝐺 ∈ Grp ) |
| 29 | 1 4 6 | iscyggen | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 30 | 29 | simplbi | ⊢ ( 𝑋 ∈ 𝐸 → 𝑋 ∈ 𝐵 ) |
| 31 | 8 30 | syl | ⊢ ( 𝜑 → 𝑋 ∈ 𝐵 ) |
| 32 | 31 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → 𝑋 ∈ 𝐵 ) |
| 33 | eqid | ⊢ ( 0g ‘ 𝐺 ) = ( 0g ‘ 𝐺 ) | |
| 34 | 1 22 4 33 | odcong | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑋 ) ∥ ( 𝐾 − 𝑀 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) ) |
| 35 | 28 32 16 17 34 | syl112anc | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( ( od ‘ 𝐺 ) ‘ 𝑋 ) ∥ ( 𝐾 − 𝑀 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) ) |
| 36 | 19 27 35 | 3bitr2d | ⊢ ( ( 𝜑 ∧ ( 𝐾 ∈ ℤ ∧ 𝑀 ∈ ℤ ) ) → ( ( 𝐿 ‘ 𝐾 ) = ( 𝐿 ‘ 𝑀 ) ↔ ( 𝐾 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) ) |