This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group with n elements is isomorphic to ZZ / n ZZ , and an infinite cyclic group is isomorphic to ZZ / 0 ZZ ~ZZ . (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygzn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cygzn.n | ⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | ||
| cygzn.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| Assertion | cygzn | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ≃𝑔 𝑌 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cygzn.n | ⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | |
| 3 | cygzn.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 4 | eqid | ⊢ ( .g ‘ 𝐺 ) = ( .g ‘ 𝐺 ) | |
| 5 | eqid | ⊢ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } | |
| 6 | 1 4 5 | iscyg2 | ⊢ ( 𝐺 ∈ CycGrp ↔ ( 𝐺 ∈ Grp ∧ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) ) |
| 7 | 6 | simprbi | ⊢ ( 𝐺 ∈ CycGrp → { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ) |
| 8 | n0 | ⊢ ( { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ≠ ∅ ↔ ∃ 𝑔 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) | |
| 9 | 7 8 | sylib | ⊢ ( 𝐺 ∈ CycGrp → ∃ 𝑔 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) |
| 10 | eqid | ⊢ ( ℤRHom ‘ 𝑌 ) = ( ℤRHom ‘ 𝑌 ) | |
| 11 | simpl | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝐺 ∈ CycGrp ) | |
| 12 | simpr | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) | |
| 13 | eqid | ⊢ ran ( 𝑚 ∈ ℤ ↦ 〈 ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑚 ) , ( 𝑚 ( .g ‘ 𝐺 ) 𝑔 ) 〉 ) = ran ( 𝑚 ∈ ℤ ↦ 〈 ( ( ℤRHom ‘ 𝑌 ) ‘ 𝑚 ) , ( 𝑚 ( .g ‘ 𝐺 ) 𝑔 ) 〉 ) | |
| 14 | 1 2 3 4 10 5 11 12 13 | cygznlem3 | ⊢ ( ( 𝐺 ∈ CycGrp ∧ 𝑔 ∈ { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 ( .g ‘ 𝐺 ) 𝑥 ) ) = 𝐵 } ) → 𝐺 ≃𝑔 𝑌 ) |
| 15 | 9 14 | exlimddv | ⊢ ( 𝐺 ∈ CycGrp → 𝐺 ≃𝑔 𝑌 ) |