This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for cygzn . (Contributed by Mario Carneiro, 21-Apr-2016) (Revised by Mario Carneiro, 23-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygzn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| cygzn.n | ⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | ||
| cygzn.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | ||
| cygzn.m | ⊢ · = ( .g ‘ 𝐺 ) | ||
| cygzn.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | ||
| cygzn.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| cygzn.g | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) | ||
| cygzn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) | ||
| cygzn.f | ⊢ 𝐹 = ran ( 𝑚 ∈ ℤ ↦ 〈 ( 𝐿 ‘ 𝑚 ) , ( 𝑚 · 𝑋 ) 〉 ) | ||
| Assertion | cygznlem2 | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑀 ) ) = ( 𝑀 · 𝑋 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.b | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | cygzn.n | ⊢ 𝑁 = if ( 𝐵 ∈ Fin , ( ♯ ‘ 𝐵 ) , 0 ) | |
| 3 | cygzn.y | ⊢ 𝑌 = ( ℤ/nℤ ‘ 𝑁 ) | |
| 4 | cygzn.m | ⊢ · = ( .g ‘ 𝐺 ) | |
| 5 | cygzn.l | ⊢ 𝐿 = ( ℤRHom ‘ 𝑌 ) | |
| 6 | cygzn.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 7 | cygzn.g | ⊢ ( 𝜑 → 𝐺 ∈ CycGrp ) | |
| 8 | cygzn.x | ⊢ ( 𝜑 → 𝑋 ∈ 𝐸 ) | |
| 9 | cygzn.f | ⊢ 𝐹 = ran ( 𝑚 ∈ ℤ ↦ 〈 ( 𝐿 ‘ 𝑚 ) , ( 𝑚 · 𝑋 ) 〉 ) | |
| 10 | fvexd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( 𝐿 ‘ 𝑚 ) ∈ V ) | |
| 11 | ovexd | ⊢ ( ( 𝜑 ∧ 𝑚 ∈ ℤ ) → ( 𝑚 · 𝑋 ) ∈ V ) | |
| 12 | fveq2 | ⊢ ( 𝑚 = 𝑀 → ( 𝐿 ‘ 𝑚 ) = ( 𝐿 ‘ 𝑀 ) ) | |
| 13 | oveq1 | ⊢ ( 𝑚 = 𝑀 → ( 𝑚 · 𝑋 ) = ( 𝑀 · 𝑋 ) ) | |
| 14 | 1 2 3 4 5 6 7 8 9 | cygznlem2a | ⊢ ( 𝜑 → 𝐹 : ( Base ‘ 𝑌 ) ⟶ 𝐵 ) |
| 15 | 14 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 16 | 9 10 11 12 13 15 | fliftval | ⊢ ( ( 𝜑 ∧ 𝑀 ∈ ℤ ) → ( 𝐹 ‘ ( 𝐿 ‘ 𝑀 ) ) = ( 𝑀 · 𝑋 ) ) |