This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A cyclic group with n elements is isomorphic to ZZ / n ZZ . (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | cygzn.b | |- B = ( Base ` G ) |
|
| cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
||
| cygzn.y | |- Y = ( Z/nZ ` N ) |
||
| cygzn.m | |- .x. = ( .g ` G ) |
||
| cygzn.l | |- L = ( ZRHom ` Y ) |
||
| cygzn.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
||
| cygzn.g | |- ( ph -> G e. CycGrp ) |
||
| cygzn.x | |- ( ph -> X e. E ) |
||
| cygzn.f | |- F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. ) |
||
| Assertion | cygznlem3 | |- ( ph -> G ~=g Y ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cygzn.b | |- B = ( Base ` G ) |
|
| 2 | cygzn.n | |- N = if ( B e. Fin , ( # ` B ) , 0 ) |
|
| 3 | cygzn.y | |- Y = ( Z/nZ ` N ) |
|
| 4 | cygzn.m | |- .x. = ( .g ` G ) |
|
| 5 | cygzn.l | |- L = ( ZRHom ` Y ) |
|
| 6 | cygzn.e | |- E = { x e. B | ran ( n e. ZZ |-> ( n .x. x ) ) = B } |
|
| 7 | cygzn.g | |- ( ph -> G e. CycGrp ) |
|
| 8 | cygzn.x | |- ( ph -> X e. E ) |
|
| 9 | cygzn.f | |- F = ran ( m e. ZZ |-> <. ( L ` m ) , ( m .x. X ) >. ) |
|
| 10 | eqid | |- ( Base ` Y ) = ( Base ` Y ) |
|
| 11 | eqid | |- ( +g ` Y ) = ( +g ` Y ) |
|
| 12 | eqid | |- ( +g ` G ) = ( +g ` G ) |
|
| 13 | hashcl | |- ( B e. Fin -> ( # ` B ) e. NN0 ) |
|
| 14 | 13 | adantl | |- ( ( ph /\ B e. Fin ) -> ( # ` B ) e. NN0 ) |
| 15 | 0nn0 | |- 0 e. NN0 |
|
| 16 | 15 | a1i | |- ( ( ph /\ -. B e. Fin ) -> 0 e. NN0 ) |
| 17 | 14 16 | ifclda | |- ( ph -> if ( B e. Fin , ( # ` B ) , 0 ) e. NN0 ) |
| 18 | 2 17 | eqeltrid | |- ( ph -> N e. NN0 ) |
| 19 | 3 | zncrng | |- ( N e. NN0 -> Y e. CRing ) |
| 20 | crngring | |- ( Y e. CRing -> Y e. Ring ) |
|
| 21 | ringgrp | |- ( Y e. Ring -> Y e. Grp ) |
|
| 22 | 18 19 20 21 | 4syl | |- ( ph -> Y e. Grp ) |
| 23 | cyggrp | |- ( G e. CycGrp -> G e. Grp ) |
|
| 24 | 7 23 | syl | |- ( ph -> G e. Grp ) |
| 25 | 1 2 3 4 5 6 7 8 9 | cygznlem2a | |- ( ph -> F : ( Base ` Y ) --> B ) |
| 26 | 3 10 5 | znzrhfo | |- ( N e. NN0 -> L : ZZ -onto-> ( Base ` Y ) ) |
| 27 | 18 26 | syl | |- ( ph -> L : ZZ -onto-> ( Base ` Y ) ) |
| 28 | foelrn | |- ( ( L : ZZ -onto-> ( Base ` Y ) /\ a e. ( Base ` Y ) ) -> E. i e. ZZ a = ( L ` i ) ) |
|
| 29 | 27 28 | sylan | |- ( ( ph /\ a e. ( Base ` Y ) ) -> E. i e. ZZ a = ( L ` i ) ) |
| 30 | foelrn | |- ( ( L : ZZ -onto-> ( Base ` Y ) /\ b e. ( Base ` Y ) ) -> E. j e. ZZ b = ( L ` j ) ) |
|
| 31 | 27 30 | sylan | |- ( ( ph /\ b e. ( Base ` Y ) ) -> E. j e. ZZ b = ( L ` j ) ) |
| 32 | 29 31 | anim12dan | |- ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) ) -> ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) ) |
| 33 | reeanv | |- ( E. i e. ZZ E. j e. ZZ ( a = ( L ` i ) /\ b = ( L ` j ) ) <-> ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) ) |
|
| 34 | 24 | adantr | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> G e. Grp ) |
| 35 | simprl | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> i e. ZZ ) |
|
| 36 | simprr | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> j e. ZZ ) |
|
| 37 | 1 4 6 | iscyggen | |- ( X e. E <-> ( X e. B /\ ran ( n e. ZZ |-> ( n .x. X ) ) = B ) ) |
| 38 | 37 | simplbi | |- ( X e. E -> X e. B ) |
| 39 | 8 38 | syl | |- ( ph -> X e. B ) |
| 40 | 39 | adantr | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> X e. B ) |
| 41 | 1 4 12 | mulgdir | |- ( ( G e. Grp /\ ( i e. ZZ /\ j e. ZZ /\ X e. B ) ) -> ( ( i + j ) .x. X ) = ( ( i .x. X ) ( +g ` G ) ( j .x. X ) ) ) |
| 42 | 34 35 36 40 41 | syl13anc | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( i + j ) .x. X ) = ( ( i .x. X ) ( +g ` G ) ( j .x. X ) ) ) |
| 43 | 18 19 | syl | |- ( ph -> Y e. CRing ) |
| 44 | 5 | zrhrhm | |- ( Y e. Ring -> L e. ( ZZring RingHom Y ) ) |
| 45 | rhmghm | |- ( L e. ( ZZring RingHom Y ) -> L e. ( ZZring GrpHom Y ) ) |
|
| 46 | 43 20 44 45 | 4syl | |- ( ph -> L e. ( ZZring GrpHom Y ) ) |
| 47 | 46 | adantr | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> L e. ( ZZring GrpHom Y ) ) |
| 48 | zringbas | |- ZZ = ( Base ` ZZring ) |
|
| 49 | zringplusg | |- + = ( +g ` ZZring ) |
|
| 50 | 48 49 11 | ghmlin | |- ( ( L e. ( ZZring GrpHom Y ) /\ i e. ZZ /\ j e. ZZ ) -> ( L ` ( i + j ) ) = ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) |
| 51 | 47 35 36 50 | syl3anc | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( L ` ( i + j ) ) = ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) |
| 52 | 51 | fveq2d | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( L ` ( i + j ) ) ) = ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) ) |
| 53 | zaddcl | |- ( ( i e. ZZ /\ j e. ZZ ) -> ( i + j ) e. ZZ ) |
|
| 54 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | |- ( ( ph /\ ( i + j ) e. ZZ ) -> ( F ` ( L ` ( i + j ) ) ) = ( ( i + j ) .x. X ) ) |
| 55 | 53 54 | sylan2 | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( L ` ( i + j ) ) ) = ( ( i + j ) .x. X ) ) |
| 56 | 52 55 | eqtr3d | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) = ( ( i + j ) .x. X ) ) |
| 57 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | |- ( ( ph /\ i e. ZZ ) -> ( F ` ( L ` i ) ) = ( i .x. X ) ) |
| 58 | 57 | adantrr | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( L ` i ) ) = ( i .x. X ) ) |
| 59 | 1 2 3 4 5 6 7 8 9 | cygznlem2 | |- ( ( ph /\ j e. ZZ ) -> ( F ` ( L ` j ) ) = ( j .x. X ) ) |
| 60 | 59 | adantrl | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( L ` j ) ) = ( j .x. X ) ) |
| 61 | 58 60 | oveq12d | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( F ` ( L ` i ) ) ( +g ` G ) ( F ` ( L ` j ) ) ) = ( ( i .x. X ) ( +g ` G ) ( j .x. X ) ) ) |
| 62 | 42 56 61 | 3eqtr4d | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) = ( ( F ` ( L ` i ) ) ( +g ` G ) ( F ` ( L ` j ) ) ) ) |
| 63 | oveq12 | |- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( a ( +g ` Y ) b ) = ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) |
|
| 64 | 63 | fveq2d | |- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) ) |
| 65 | fveq2 | |- ( a = ( L ` i ) -> ( F ` a ) = ( F ` ( L ` i ) ) ) |
|
| 66 | fveq2 | |- ( b = ( L ` j ) -> ( F ` b ) = ( F ` ( L ` j ) ) ) |
|
| 67 | 65 66 | oveqan12d | |- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` a ) ( +g ` G ) ( F ` b ) ) = ( ( F ` ( L ` i ) ) ( +g ` G ) ( F ` ( L ` j ) ) ) ) |
| 68 | 64 67 | eqeq12d | |- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) <-> ( F ` ( ( L ` i ) ( +g ` Y ) ( L ` j ) ) ) = ( ( F ` ( L ` i ) ) ( +g ` G ) ( F ` ( L ` j ) ) ) ) ) |
| 69 | 62 68 | syl5ibrcom | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) ) |
| 70 | 69 | rexlimdvva | |- ( ph -> ( E. i e. ZZ E. j e. ZZ ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) ) |
| 71 | 33 70 | biimtrrid | |- ( ph -> ( ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) ) |
| 72 | 71 | imp | |- ( ( ph /\ ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) |
| 73 | 32 72 | syldan | |- ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) ) -> ( F ` ( a ( +g ` Y ) b ) ) = ( ( F ` a ) ( +g ` G ) ( F ` b ) ) ) |
| 74 | 10 1 11 12 22 24 25 73 | isghmd | |- ( ph -> F e. ( Y GrpHom G ) ) |
| 75 | 58 60 | eqeq12d | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) <-> ( i .x. X ) = ( j .x. X ) ) ) |
| 76 | 1 2 3 4 5 6 7 8 | cygznlem1 | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( L ` i ) = ( L ` j ) <-> ( i .x. X ) = ( j .x. X ) ) ) |
| 77 | 75 76 | bitr4d | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) <-> ( L ` i ) = ( L ` j ) ) ) |
| 78 | 77 | biimpd | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) -> ( L ` i ) = ( L ` j ) ) ) |
| 79 | 65 66 | eqeqan12d | |- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` a ) = ( F ` b ) <-> ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) ) ) |
| 80 | eqeq12 | |- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( a = b <-> ( L ` i ) = ( L ` j ) ) ) |
|
| 81 | 79 80 | imbi12d | |- ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( ( F ` a ) = ( F ` b ) -> a = b ) <-> ( ( F ` ( L ` i ) ) = ( F ` ( L ` j ) ) -> ( L ` i ) = ( L ` j ) ) ) ) |
| 82 | 78 81 | syl5ibrcom | |- ( ( ph /\ ( i e. ZZ /\ j e. ZZ ) ) -> ( ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
| 83 | 82 | rexlimdvva | |- ( ph -> ( E. i e. ZZ E. j e. ZZ ( a = ( L ` i ) /\ b = ( L ` j ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
| 84 | 33 83 | biimtrrid | |- ( ph -> ( ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
| 85 | 84 | imp | |- ( ( ph /\ ( E. i e. ZZ a = ( L ` i ) /\ E. j e. ZZ b = ( L ` j ) ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
| 86 | 32 85 | syldan | |- ( ( ph /\ ( a e. ( Base ` Y ) /\ b e. ( Base ` Y ) ) ) -> ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
| 87 | 86 | ralrimivva | |- ( ph -> A. a e. ( Base ` Y ) A. b e. ( Base ` Y ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) |
| 88 | dff13 | |- ( F : ( Base ` Y ) -1-1-> B <-> ( F : ( Base ` Y ) --> B /\ A. a e. ( Base ` Y ) A. b e. ( Base ` Y ) ( ( F ` a ) = ( F ` b ) -> a = b ) ) ) |
|
| 89 | 25 87 88 | sylanbrc | |- ( ph -> F : ( Base ` Y ) -1-1-> B ) |
| 90 | 1 4 6 | iscyggen2 | |- ( G e. Grp -> ( X e. E <-> ( X e. B /\ A. z e. B E. n e. ZZ z = ( n .x. X ) ) ) ) |
| 91 | 24 90 | syl | |- ( ph -> ( X e. E <-> ( X e. B /\ A. z e. B E. n e. ZZ z = ( n .x. X ) ) ) ) |
| 92 | 8 91 | mpbid | |- ( ph -> ( X e. B /\ A. z e. B E. n e. ZZ z = ( n .x. X ) ) ) |
| 93 | 92 | simprd | |- ( ph -> A. z e. B E. n e. ZZ z = ( n .x. X ) ) |
| 94 | oveq1 | |- ( n = j -> ( n .x. X ) = ( j .x. X ) ) |
|
| 95 | 94 | eqeq2d | |- ( n = j -> ( z = ( n .x. X ) <-> z = ( j .x. X ) ) ) |
| 96 | 95 | cbvrexvw | |- ( E. n e. ZZ z = ( n .x. X ) <-> E. j e. ZZ z = ( j .x. X ) ) |
| 97 | 27 | adantr | |- ( ( ph /\ z e. B ) -> L : ZZ -onto-> ( Base ` Y ) ) |
| 98 | fof | |- ( L : ZZ -onto-> ( Base ` Y ) -> L : ZZ --> ( Base ` Y ) ) |
|
| 99 | 97 98 | syl | |- ( ( ph /\ z e. B ) -> L : ZZ --> ( Base ` Y ) ) |
| 100 | 99 | ffvelcdmda | |- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> ( L ` j ) e. ( Base ` Y ) ) |
| 101 | 59 | adantlr | |- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> ( F ` ( L ` j ) ) = ( j .x. X ) ) |
| 102 | 101 | eqcomd | |- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> ( j .x. X ) = ( F ` ( L ` j ) ) ) |
| 103 | fveq2 | |- ( a = ( L ` j ) -> ( F ` a ) = ( F ` ( L ` j ) ) ) |
|
| 104 | 103 | rspceeqv | |- ( ( ( L ` j ) e. ( Base ` Y ) /\ ( j .x. X ) = ( F ` ( L ` j ) ) ) -> E. a e. ( Base ` Y ) ( j .x. X ) = ( F ` a ) ) |
| 105 | 100 102 104 | syl2anc | |- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> E. a e. ( Base ` Y ) ( j .x. X ) = ( F ` a ) ) |
| 106 | eqeq1 | |- ( z = ( j .x. X ) -> ( z = ( F ` a ) <-> ( j .x. X ) = ( F ` a ) ) ) |
|
| 107 | 106 | rexbidv | |- ( z = ( j .x. X ) -> ( E. a e. ( Base ` Y ) z = ( F ` a ) <-> E. a e. ( Base ` Y ) ( j .x. X ) = ( F ` a ) ) ) |
| 108 | 105 107 | syl5ibrcom | |- ( ( ( ph /\ z e. B ) /\ j e. ZZ ) -> ( z = ( j .x. X ) -> E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
| 109 | 108 | rexlimdva | |- ( ( ph /\ z e. B ) -> ( E. j e. ZZ z = ( j .x. X ) -> E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
| 110 | 96 109 | biimtrid | |- ( ( ph /\ z e. B ) -> ( E. n e. ZZ z = ( n .x. X ) -> E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
| 111 | 110 | ralimdva | |- ( ph -> ( A. z e. B E. n e. ZZ z = ( n .x. X ) -> A. z e. B E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
| 112 | 93 111 | mpd | |- ( ph -> A. z e. B E. a e. ( Base ` Y ) z = ( F ` a ) ) |
| 113 | dffo3 | |- ( F : ( Base ` Y ) -onto-> B <-> ( F : ( Base ` Y ) --> B /\ A. z e. B E. a e. ( Base ` Y ) z = ( F ` a ) ) ) |
|
| 114 | 25 112 113 | sylanbrc | |- ( ph -> F : ( Base ` Y ) -onto-> B ) |
| 115 | df-f1o | |- ( F : ( Base ` Y ) -1-1-onto-> B <-> ( F : ( Base ` Y ) -1-1-> B /\ F : ( Base ` Y ) -onto-> B ) ) |
|
| 116 | 89 114 115 | sylanbrc | |- ( ph -> F : ( Base ` Y ) -1-1-onto-> B ) |
| 117 | 10 1 | isgim | |- ( F e. ( Y GrpIso G ) <-> ( F e. ( Y GrpHom G ) /\ F : ( Base ` Y ) -1-1-onto-> B ) ) |
| 118 | 74 116 117 | sylanbrc | |- ( ph -> F e. ( Y GrpIso G ) ) |
| 119 | brgici | |- ( F e. ( Y GrpIso G ) -> Y ~=g G ) |
|
| 120 | gicsym | |- ( Y ~=g G -> G ~=g Y ) |
|
| 121 | 118 119 120 | 3syl | |- ( ph -> G ~=g Y ) |