This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The property of being a cyclic generator for a group. (Contributed by Mario Carneiro, 21-Apr-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | ||
| iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | ||
| Assertion | iscyggen2 | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | iscyg.1 | ⊢ 𝐵 = ( Base ‘ 𝐺 ) | |
| 2 | iscyg.2 | ⊢ · = ( .g ‘ 𝐺 ) | |
| 3 | iscyg3.e | ⊢ 𝐸 = { 𝑥 ∈ 𝐵 ∣ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑥 ) ) = 𝐵 } | |
| 4 | 1 2 3 | iscyggen | ⊢ ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ) |
| 5 | 1 2 | mulgcl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 6 | 5 | 3expa | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑛 ∈ ℤ ) ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 7 | 6 | an32s | ⊢ ( ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) ∧ 𝑛 ∈ ℤ ) → ( 𝑛 · 𝑋 ) ∈ 𝐵 ) |
| 8 | 7 | fmpttd | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) : ℤ ⟶ 𝐵 ) |
| 9 | frn | ⊢ ( ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) : ℤ ⟶ 𝐵 → ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ) | |
| 10 | eqss | ⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 ∧ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) ) | |
| 11 | 10 | baib | ⊢ ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ⊆ 𝐵 → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) ) |
| 12 | 8 9 11 | 3syl | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) ) |
| 13 | dfss3 | ⊢ ( 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ↔ ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ) | |
| 14 | eqid | ⊢ ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) | |
| 15 | ovex | ⊢ ( 𝑛 · 𝑋 ) ∈ V | |
| 16 | 14 15 | elrnmpti | ⊢ ( 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ↔ ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
| 17 | 16 | ralbii | ⊢ ( ∀ 𝑦 ∈ 𝐵 𝑦 ∈ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
| 18 | 13 17 | bitri | ⊢ ( 𝐵 ⊆ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) |
| 19 | 12 18 | bitrdi | ⊢ ( ( 𝐺 ∈ Grp ∧ 𝑋 ∈ 𝐵 ) → ( ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ↔ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) |
| 20 | 19 | pm5.32da | ⊢ ( 𝐺 ∈ Grp → ( ( 𝑋 ∈ 𝐵 ∧ ran ( 𝑛 ∈ ℤ ↦ ( 𝑛 · 𝑋 ) ) = 𝐵 ) ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |
| 21 | 4 20 | bitrid | ⊢ ( 𝐺 ∈ Grp → ( 𝑋 ∈ 𝐸 ↔ ( 𝑋 ∈ 𝐵 ∧ ∀ 𝑦 ∈ 𝐵 ∃ 𝑛 ∈ ℤ 𝑦 = ( 𝑛 · 𝑋 ) ) ) ) |