This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the initial vertex of a walk occurs another time in the walk, the walk starts with a closed walk. Since the walk is expressed as a word over vertices, the closed walk can be expressed as a subword of this word. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 23-Jan-2022) (Revised by AV, 30-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkinwwlk | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑊 ∈ ( 𝑀 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 prefix 𝑁 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 2 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 3 | 1 2 | wwlknp | ⊢ ( 𝑊 ∈ ( 𝑀 WWalksN 𝐺 ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 4 | pfxcl | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 5 | 4 | adantr | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) → ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 6 | 5 | adantr | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 7 | simpll | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) | |
| 8 | simprl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℕ ) | |
| 9 | eluz2 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ↔ ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀 ) ) | |
| 10 | zre | ⊢ ( 𝑁 ∈ ℤ → 𝑁 ∈ ℝ ) | |
| 11 | zre | ⊢ ( 𝑀 ∈ ℤ → 𝑀 ∈ ℝ ) | |
| 12 | id | ⊢ ( 𝑁 ≤ 𝑀 → 𝑁 ≤ 𝑀 ) | |
| 13 | 10 11 12 | 3anim123i | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑀 ∈ ℤ ∧ 𝑁 ≤ 𝑀 ) → ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀 ) ) |
| 14 | 9 13 | sylbi | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀 ) ) |
| 15 | letrp1 | ⊢ ( ( 𝑁 ∈ ℝ ∧ 𝑀 ∈ ℝ ∧ 𝑁 ≤ 𝑀 ) → 𝑁 ≤ ( 𝑀 + 1 ) ) | |
| 16 | 14 15 | syl | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) → 𝑁 ≤ ( 𝑀 + 1 ) ) |
| 17 | 16 | adantl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ≤ ( 𝑀 + 1 ) ) |
| 18 | 17 | adantl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ≤ ( 𝑀 + 1 ) ) |
| 19 | breq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ↔ 𝑁 ≤ ( 𝑀 + 1 ) ) ) | |
| 20 | 19 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑁 ≤ ( ♯ ‘ 𝑊 ) ↔ 𝑁 ≤ ( 𝑀 + 1 ) ) ) |
| 21 | 18 20 | mpbird | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) |
| 22 | pfxn0 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ℕ ∧ 𝑁 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝑁 ) ≠ ∅ ) | |
| 23 | 7 8 21 22 | syl3anc | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑊 prefix 𝑁 ) ≠ ∅ ) |
| 24 | 6 23 | jca | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ) |
| 25 | 24 | 3adantl3 | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ) |
| 26 | 25 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ) |
| 27 | nnz | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℤ ) | |
| 28 | 1nn0 | ⊢ 1 ∈ ℕ0 | |
| 29 | eluzmn | ⊢ ( ( 𝑁 ∈ ℤ ∧ 1 ∈ ℕ0 ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) | |
| 30 | 27 28 29 | sylancl | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 31 | uzss | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) | |
| 32 | 30 31 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ℤ≥ ‘ 𝑁 ) ⊆ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 33 | 32 | sselda | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑀 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 34 | fzoss2 | ⊢ ( 𝑀 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) ) |
| 36 | 35 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) ) |
| 37 | ssralv | ⊢ ( ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑀 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) | |
| 38 | 36 37 | syl | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 39 | 38 | 3exp | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 40 | 39 | com34 | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 41 | 40 | 3imp1 | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 42 | 41 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 43 | nnnn0 | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℕ0 ) | |
| 44 | elnn0uz | ⊢ ( 𝑁 ∈ ℕ0 ↔ 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) | |
| 45 | 43 44 | sylib | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ( ℤ≥ ‘ 0 ) ) |
| 46 | eluzfz | ⊢ ( ( 𝑁 ∈ ( ℤ≥ ‘ 0 ) ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 0 ... 𝑀 ) ) | |
| 47 | 45 46 | sylan | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 0 ... 𝑀 ) ) |
| 48 | fzelp1 | ⊢ ( 𝑁 ∈ ( 0 ... 𝑀 ) → 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) | |
| 49 | 47 48 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) |
| 50 | 49 | adantl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) |
| 51 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 0 ... ( ♯ ‘ 𝑊 ) ) = ( 0 ... ( 𝑀 + 1 ) ) ) | |
| 52 | 51 | eleq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) ) |
| 53 | 52 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) ) |
| 54 | 50 53 | mpbird | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 55 | pfxlen | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) = 𝑁 ) | |
| 56 | 7 54 55 | syl2anc | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) = 𝑁 ) |
| 57 | 56 | oveq1d | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) = ( 𝑁 − 1 ) ) |
| 58 | 57 | oveq2d | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) = ( 0 ..^ ( 𝑁 − 1 ) ) ) |
| 59 | 58 | raleqdv | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 60 | 7 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) |
| 61 | 54 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 62 | 30 | ad2antrl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) ) |
| 63 | fzoss2 | ⊢ ( 𝑁 ∈ ( ℤ≥ ‘ ( 𝑁 − 1 ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) | |
| 64 | 62 63 | syl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 0 ..^ ( 𝑁 − 1 ) ) ⊆ ( 0 ..^ 𝑁 ) ) |
| 65 | 64 | sselda | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → 𝑖 ∈ ( 0 ..^ 𝑁 ) ) |
| 66 | pfxfv | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝑖 ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 67 | 60 61 65 66 | syl3anc | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) |
| 68 | 27 | ad2antrl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ℤ ) |
| 69 | elfzom1elp1fzo | ⊢ ( ( 𝑁 ∈ ℤ ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑖 + 1 ) ∈ ( 0 ..^ 𝑁 ) ) | |
| 70 | 68 69 | sylan | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( 𝑖 + 1 ) ∈ ( 0 ..^ 𝑁 ) ) |
| 71 | pfxfv | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝑖 + 1 ) ∈ ( 0 ..^ 𝑁 ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) | |
| 72 | 60 61 70 71 | syl3anc | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) |
| 73 | 67 72 | preq12d | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } = { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ) |
| 74 | 73 | eleq1d | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) ) → ( { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 75 | 74 | ralbidva | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 76 | 59 75 | bitrd | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 77 | 76 | 3adantl3 | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 78 | 77 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ( 0 ..^ ( 𝑁 − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 79 | 42 78 | mpbird | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 80 | elfz1uz | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 1 ... 𝑀 ) ) | |
| 81 | fzelp1 | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) | |
| 82 | 80 81 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
| 83 | 82 | adantl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) |
| 84 | oveq2 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 1 ... ( ♯ ‘ 𝑊 ) ) = ( 1 ... ( 𝑀 + 1 ) ) ) | |
| 85 | 84 | eleq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
| 86 | 85 | ad2antlr | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ↔ 𝑁 ∈ ( 1 ... ( 𝑀 + 1 ) ) ) ) |
| 87 | 83 86 | mpbird | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) |
| 88 | pfxfvlsw | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) | |
| 89 | pfxfv0 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) | |
| 90 | 88 89 | preq12d | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
| 91 | 7 87 90 | syl2anc | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
| 92 | 91 | 3adantl3 | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
| 93 | 92 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) |
| 94 | fz1fzo0m1 | ⊢ ( 𝑁 ∈ ( 1 ... 𝑀 ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) | |
| 95 | 80 94 | syl | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
| 96 | 95 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑁 − 1 ) ∈ ( 0 ..^ 𝑀 ) ) |
| 97 | simpr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → 𝑖 = ( 𝑁 − 1 ) ) | |
| 98 | 97 | fveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( 𝑊 ‘ 𝑖 ) = ( 𝑊 ‘ ( 𝑁 − 1 ) ) ) |
| 99 | oveq1 | ⊢ ( 𝑖 = ( 𝑁 − 1 ) → ( 𝑖 + 1 ) = ( ( 𝑁 − 1 ) + 1 ) ) | |
| 100 | nncn | ⊢ ( 𝑁 ∈ ℕ → 𝑁 ∈ ℂ ) | |
| 101 | npcan1 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) | |
| 102 | 100 101 | syl | ⊢ ( 𝑁 ∈ ℕ → ( ( 𝑁 − 1 ) + 1 ) = 𝑁 ) |
| 103 | 99 102 | sylan9eqr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( 𝑖 + 1 ) = 𝑁 ) |
| 104 | 103 | fveq2d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( 𝑊 ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ 𝑁 ) ) |
| 105 | 98 104 | preq12d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ) |
| 106 | 105 | eleq1d | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 107 | 106 | ex | ⊢ ( 𝑁 ∈ ℕ → ( 𝑖 = ( 𝑁 − 1 ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 108 | 107 | adantr | ⊢ ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑖 = ( 𝑁 − 1 ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 109 | 108 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑖 = ( 𝑁 − 1 ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 110 | 109 | imp | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ 𝑖 = ( 𝑁 − 1 ) ) → ( { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 111 | 96 110 | rspcdv | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 112 | 111 | 3exp | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 113 | 112 | com34 | ⊢ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) → ( ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) → ( ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 114 | 113 | 3imp1 | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 115 | 114 | adantr | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 116 | preq2 | ⊢ ( ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } = { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ) | |
| 117 | 116 | eleq1d | ⊢ ( ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) → ( { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 118 | 117 | adantl | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 𝑁 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 119 | 115 118 | mpbid | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → { ( 𝑊 ‘ ( 𝑁 − 1 ) ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 120 | 93 119 | eqeltrd | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 121 | 26 79 120 | 3jca | ⊢ ( ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 122 | 121 | exp31 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) → ( ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) ) |
| 123 | 122 | 3imp21 | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 124 | 1 2 | isclwwlk | ⊢ ( ( 𝑊 prefix 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( ( 𝑊 prefix 𝑁 ) ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( 𝑊 prefix 𝑁 ) ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) − 1 ) ) { ( ( 𝑊 prefix 𝑁 ) ‘ 𝑖 ) , ( ( 𝑊 prefix 𝑁 ) ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ ( 𝑊 prefix 𝑁 ) ) , ( ( 𝑊 prefix 𝑁 ) ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 125 | 123 124 | sylibr | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 prefix 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ) |
| 126 | 47 | adantl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... 𝑀 ) ) |
| 127 | 126 48 | syl | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( 𝑀 + 1 ) ) ) |
| 128 | 127 53 | mpbird | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 129 | 7 128 | jca | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) ∧ ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 130 | 129 | ex | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 131 | 130 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) → ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) ) |
| 132 | 131 | impcom | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 133 | 132 | 3adant3 | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ 𝑁 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ) |
| 134 | 133 55 | syl | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) = 𝑁 ) |
| 135 | isclwwlkn | ⊢ ( ( 𝑊 prefix 𝑁 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 prefix 𝑁 ) ∈ ( ClWWalks ‘ 𝐺 ) ∧ ( ♯ ‘ ( 𝑊 prefix 𝑁 ) ) = 𝑁 ) ) | |
| 136 | 125 134 135 | sylanbrc | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑀 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑀 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 prefix 𝑁 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |
| 137 | 3 136 | syl3an2 | ⊢ ( ( ( 𝑁 ∈ ℕ ∧ 𝑀 ∈ ( ℤ≥ ‘ 𝑁 ) ) ∧ 𝑊 ∈ ( 𝑀 WWalksN 𝐺 ) ∧ ( 𝑊 ‘ 𝑁 ) = ( 𝑊 ‘ 0 ) ) → ( 𝑊 prefix 𝑁 ) ∈ ( 𝑁 ClWWalksN 𝐺 ) ) |