This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A transitive property of 'less than or equal' and plus 1. (Contributed by NM, 5-Aug-2005)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | letrp1 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ltp1 | ⊢ ( 𝐵 ∈ ℝ → 𝐵 < ( 𝐵 + 1 ) ) | |
| 2 | 1 | adantl | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → 𝐵 < ( 𝐵 + 1 ) ) |
| 3 | peano2re | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 + 1 ) ∈ ℝ ) | |
| 4 | 3 | ancli | ⊢ ( 𝐵 ∈ ℝ → ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) ) |
| 5 | lelttr | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝐴 < ( 𝐵 + 1 ) ) ) | |
| 6 | 5 | 3expb | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝐴 < ( 𝐵 + 1 ) ) ) |
| 7 | 4 6 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( ( 𝐴 ≤ 𝐵 ∧ 𝐵 < ( 𝐵 + 1 ) ) → 𝐴 < ( 𝐵 + 1 ) ) ) |
| 8 | 2 7 | mpan2d | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 ≤ 𝐵 → 𝐴 < ( 𝐵 + 1 ) ) ) |
| 9 | 8 | 3impia | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 < ( 𝐵 + 1 ) ) |
| 10 | ltle | ⊢ ( ( 𝐴 ∈ ℝ ∧ ( 𝐵 + 1 ) ∈ ℝ ) → ( 𝐴 < ( 𝐵 + 1 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) | |
| 11 | 3 10 | sylan2 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ) → ( 𝐴 < ( 𝐵 + 1 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 12 | 11 | 3adant3 | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → ( 𝐴 < ( 𝐵 + 1 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) ) |
| 13 | 9 12 | mpd | ⊢ ( ( 𝐴 ∈ ℝ ∧ 𝐵 ∈ ℝ ∧ 𝐴 ≤ 𝐵 ) → 𝐴 ≤ ( 𝐵 + 1 ) ) |