This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the initial vertex of a walk occurs another time in the walk, the walk starts with a closed walk. Since the walk is expressed as a word over vertices, the closed walk can be expressed as a subword of this word. (Contributed by Alexander van der Vekens, 15-Sep-2018) (Revised by AV, 23-Jan-2022) (Revised by AV, 30-Oct-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkinwwlk | |- ( ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) /\ W e. ( M WWalksN G ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( W prefix N ) e. ( N ClWWalksN G ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | |- ( Vtx ` G ) = ( Vtx ` G ) |
|
| 2 | eqid | |- ( Edg ` G ) = ( Edg ` G ) |
|
| 3 | 1 2 | wwlknp | |- ( W e. ( M WWalksN G ) -> ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 4 | pfxcl | |- ( W e. Word ( Vtx ` G ) -> ( W prefix N ) e. Word ( Vtx ` G ) ) |
|
| 5 | 4 | adantr | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) -> ( W prefix N ) e. Word ( Vtx ` G ) ) |
| 6 | 5 | adantr | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( W prefix N ) e. Word ( Vtx ` G ) ) |
| 7 | simpll | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> W e. Word ( Vtx ` G ) ) |
|
| 8 | simprl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. NN ) |
|
| 9 | eluz2 | |- ( M e. ( ZZ>= ` N ) <-> ( N e. ZZ /\ M e. ZZ /\ N <_ M ) ) |
|
| 10 | zre | |- ( N e. ZZ -> N e. RR ) |
|
| 11 | zre | |- ( M e. ZZ -> M e. RR ) |
|
| 12 | id | |- ( N <_ M -> N <_ M ) |
|
| 13 | 10 11 12 | 3anim123i | |- ( ( N e. ZZ /\ M e. ZZ /\ N <_ M ) -> ( N e. RR /\ M e. RR /\ N <_ M ) ) |
| 14 | 9 13 | sylbi | |- ( M e. ( ZZ>= ` N ) -> ( N e. RR /\ M e. RR /\ N <_ M ) ) |
| 15 | letrp1 | |- ( ( N e. RR /\ M e. RR /\ N <_ M ) -> N <_ ( M + 1 ) ) |
|
| 16 | 14 15 | syl | |- ( M e. ( ZZ>= ` N ) -> N <_ ( M + 1 ) ) |
| 17 | 16 | adantl | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N <_ ( M + 1 ) ) |
| 18 | 17 | adantl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N <_ ( M + 1 ) ) |
| 19 | breq2 | |- ( ( # ` W ) = ( M + 1 ) -> ( N <_ ( # ` W ) <-> N <_ ( M + 1 ) ) ) |
|
| 20 | 19 | ad2antlr | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( N <_ ( # ` W ) <-> N <_ ( M + 1 ) ) ) |
| 21 | 18 20 | mpbird | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N <_ ( # ` W ) ) |
| 22 | pfxn0 | |- ( ( W e. Word ( Vtx ` G ) /\ N e. NN /\ N <_ ( # ` W ) ) -> ( W prefix N ) =/= (/) ) |
|
| 23 | 7 8 21 22 | syl3anc | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( W prefix N ) =/= (/) ) |
| 24 | 6 23 | jca | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( ( W prefix N ) e. Word ( Vtx ` G ) /\ ( W prefix N ) =/= (/) ) ) |
| 25 | 24 | 3adantl3 | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( ( W prefix N ) e. Word ( Vtx ` G ) /\ ( W prefix N ) =/= (/) ) ) |
| 26 | 25 | adantr | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( ( W prefix N ) e. Word ( Vtx ` G ) /\ ( W prefix N ) =/= (/) ) ) |
| 27 | nnz | |- ( N e. NN -> N e. ZZ ) |
|
| 28 | 1nn0 | |- 1 e. NN0 |
|
| 29 | eluzmn | |- ( ( N e. ZZ /\ 1 e. NN0 ) -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
|
| 30 | 27 28 29 | sylancl | |- ( N e. NN -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 31 | uzss | |- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( ZZ>= ` N ) C_ ( ZZ>= ` ( N - 1 ) ) ) |
|
| 32 | 30 31 | syl | |- ( N e. NN -> ( ZZ>= ` N ) C_ ( ZZ>= ` ( N - 1 ) ) ) |
| 33 | 32 | sselda | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> M e. ( ZZ>= ` ( N - 1 ) ) ) |
| 34 | fzoss2 | |- ( M e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ M ) ) |
|
| 35 | 33 34 | syl | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ M ) ) |
| 36 | 35 | 3ad2ant3 | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ M ) ) |
| 37 | ssralv | |- ( ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ M ) -> ( A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
|
| 38 | 36 37 | syl | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 39 | 38 | 3exp | |- ( W e. Word ( Vtx ` G ) -> ( ( # ` W ) = ( M + 1 ) -> ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 40 | 39 | com34 | |- ( W e. Word ( Vtx ` G ) -> ( ( # ` W ) = ( M + 1 ) -> ( A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) ) ) |
| 41 | 40 | 3imp1 | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 42 | 41 | adantr | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 43 | nnnn0 | |- ( N e. NN -> N e. NN0 ) |
|
| 44 | elnn0uz | |- ( N e. NN0 <-> N e. ( ZZ>= ` 0 ) ) |
|
| 45 | 43 44 | sylib | |- ( N e. NN -> N e. ( ZZ>= ` 0 ) ) |
| 46 | eluzfz | |- ( ( N e. ( ZZ>= ` 0 ) /\ M e. ( ZZ>= ` N ) ) -> N e. ( 0 ... M ) ) |
|
| 47 | 45 46 | sylan | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N e. ( 0 ... M ) ) |
| 48 | fzelp1 | |- ( N e. ( 0 ... M ) -> N e. ( 0 ... ( M + 1 ) ) ) |
|
| 49 | 47 48 | syl | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N e. ( 0 ... ( M + 1 ) ) ) |
| 50 | 49 | adantl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ( 0 ... ( M + 1 ) ) ) |
| 51 | oveq2 | |- ( ( # ` W ) = ( M + 1 ) -> ( 0 ... ( # ` W ) ) = ( 0 ... ( M + 1 ) ) ) |
|
| 52 | 51 | eleq2d | |- ( ( # ` W ) = ( M + 1 ) -> ( N e. ( 0 ... ( # ` W ) ) <-> N e. ( 0 ... ( M + 1 ) ) ) ) |
| 53 | 52 | ad2antlr | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( N e. ( 0 ... ( # ` W ) ) <-> N e. ( 0 ... ( M + 1 ) ) ) ) |
| 54 | 50 53 | mpbird | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ( 0 ... ( # ` W ) ) ) |
| 55 | pfxlen | |- ( ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) -> ( # ` ( W prefix N ) ) = N ) |
|
| 56 | 7 54 55 | syl2anc | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( # ` ( W prefix N ) ) = N ) |
| 57 | 56 | oveq1d | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( ( # ` ( W prefix N ) ) - 1 ) = ( N - 1 ) ) |
| 58 | 57 | oveq2d | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) = ( 0 ..^ ( N - 1 ) ) ) |
| 59 | 58 | raleqdv | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 60 | 7 | adantr | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> W e. Word ( Vtx ` G ) ) |
| 61 | 54 | adantr | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> N e. ( 0 ... ( # ` W ) ) ) |
| 62 | 30 | ad2antrl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ( ZZ>= ` ( N - 1 ) ) ) |
| 63 | fzoss2 | |- ( N e. ( ZZ>= ` ( N - 1 ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
|
| 64 | 62 63 | syl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( 0 ..^ ( N - 1 ) ) C_ ( 0 ..^ N ) ) |
| 65 | 64 | sselda | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> i e. ( 0 ..^ N ) ) |
| 66 | pfxfv | |- ( ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ... ( # ` W ) ) /\ i e. ( 0 ..^ N ) ) -> ( ( W prefix N ) ` i ) = ( W ` i ) ) |
|
| 67 | 60 61 65 66 | syl3anc | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( W prefix N ) ` i ) = ( W ` i ) ) |
| 68 | 27 | ad2antrl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ZZ ) |
| 69 | elfzom1elp1fzo | |- ( ( N e. ZZ /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ N ) ) |
|
| 70 | 68 69 | sylan | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( i + 1 ) e. ( 0 ..^ N ) ) |
| 71 | pfxfv | |- ( ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ... ( # ` W ) ) /\ ( i + 1 ) e. ( 0 ..^ N ) ) -> ( ( W prefix N ) ` ( i + 1 ) ) = ( W ` ( i + 1 ) ) ) |
|
| 72 | 60 61 70 71 | syl3anc | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( ( W prefix N ) ` ( i + 1 ) ) = ( W ` ( i + 1 ) ) ) |
| 73 | 67 72 | preq12d | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } = { ( W ` i ) , ( W ` ( i + 1 ) ) } ) |
| 74 | 73 | eleq1d | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i e. ( 0 ..^ ( N - 1 ) ) ) -> ( { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 75 | 74 | ralbidva | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( A. i e. ( 0 ..^ ( N - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 76 | 59 75 | bitrd | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 77 | 76 | 3adantl3 | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 78 | 77 | adantr | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) <-> A. i e. ( 0 ..^ ( N - 1 ) ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) |
| 79 | 42 78 | mpbird | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) ) |
| 80 | elfz1uz | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N e. ( 1 ... M ) ) |
|
| 81 | fzelp1 | |- ( N e. ( 1 ... M ) -> N e. ( 1 ... ( M + 1 ) ) ) |
|
| 82 | 80 81 | syl | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> N e. ( 1 ... ( M + 1 ) ) ) |
| 83 | 82 | adantl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ( 1 ... ( M + 1 ) ) ) |
| 84 | oveq2 | |- ( ( # ` W ) = ( M + 1 ) -> ( 1 ... ( # ` W ) ) = ( 1 ... ( M + 1 ) ) ) |
|
| 85 | 84 | eleq2d | |- ( ( # ` W ) = ( M + 1 ) -> ( N e. ( 1 ... ( # ` W ) ) <-> N e. ( 1 ... ( M + 1 ) ) ) ) |
| 86 | 85 | ad2antlr | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( N e. ( 1 ... ( # ` W ) ) <-> N e. ( 1 ... ( M + 1 ) ) ) ) |
| 87 | 83 86 | mpbird | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ( 1 ... ( # ` W ) ) ) |
| 88 | pfxfvlsw | |- ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` W ) ) ) -> ( lastS ` ( W prefix N ) ) = ( W ` ( N - 1 ) ) ) |
|
| 89 | pfxfv0 | |- ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` W ) ) ) -> ( ( W prefix N ) ` 0 ) = ( W ` 0 ) ) |
|
| 90 | 88 89 | preq12d | |- ( ( W e. Word ( Vtx ` G ) /\ N e. ( 1 ... ( # ` W ) ) ) -> { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) |
| 91 | 7 87 90 | syl2anc | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) |
| 92 | 91 | 3adantl3 | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) |
| 93 | 92 | adantr | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) |
| 94 | fz1fzo0m1 | |- ( N e. ( 1 ... M ) -> ( N - 1 ) e. ( 0 ..^ M ) ) |
|
| 95 | 80 94 | syl | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( N - 1 ) e. ( 0 ..^ M ) ) |
| 96 | 95 | 3ad2ant3 | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( N - 1 ) e. ( 0 ..^ M ) ) |
| 97 | simpr | |- ( ( N e. NN /\ i = ( N - 1 ) ) -> i = ( N - 1 ) ) |
|
| 98 | 97 | fveq2d | |- ( ( N e. NN /\ i = ( N - 1 ) ) -> ( W ` i ) = ( W ` ( N - 1 ) ) ) |
| 99 | oveq1 | |- ( i = ( N - 1 ) -> ( i + 1 ) = ( ( N - 1 ) + 1 ) ) |
|
| 100 | nncn | |- ( N e. NN -> N e. CC ) |
|
| 101 | npcan1 | |- ( N e. CC -> ( ( N - 1 ) + 1 ) = N ) |
|
| 102 | 100 101 | syl | |- ( N e. NN -> ( ( N - 1 ) + 1 ) = N ) |
| 103 | 99 102 | sylan9eqr | |- ( ( N e. NN /\ i = ( N - 1 ) ) -> ( i + 1 ) = N ) |
| 104 | 103 | fveq2d | |- ( ( N e. NN /\ i = ( N - 1 ) ) -> ( W ` ( i + 1 ) ) = ( W ` N ) ) |
| 105 | 98 104 | preq12d | |- ( ( N e. NN /\ i = ( N - 1 ) ) -> { ( W ` i ) , ( W ` ( i + 1 ) ) } = { ( W ` ( N - 1 ) ) , ( W ` N ) } ) |
| 106 | 105 | eleq1d | |- ( ( N e. NN /\ i = ( N - 1 ) ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) |
| 107 | 106 | ex | |- ( N e. NN -> ( i = ( N - 1 ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) |
| 108 | 107 | adantr | |- ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( i = ( N - 1 ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) |
| 109 | 108 | 3ad2ant3 | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( i = ( N - 1 ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) |
| 110 | 109 | imp | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ i = ( N - 1 ) ) -> ( { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) |
| 111 | 96 110 | rspcdv | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) |
| 112 | 111 | 3exp | |- ( W e. Word ( Vtx ` G ) -> ( ( # ` W ) = ( M + 1 ) -> ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) ) |
| 113 | 112 | com34 | |- ( W e. Word ( Vtx ` G ) -> ( ( # ` W ) = ( M + 1 ) -> ( A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) -> ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) ) ) ) |
| 114 | 113 | 3imp1 | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) |
| 115 | 114 | adantr | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) ) |
| 116 | preq2 | |- ( ( W ` N ) = ( W ` 0 ) -> { ( W ` ( N - 1 ) ) , ( W ` N ) } = { ( W ` ( N - 1 ) ) , ( W ` 0 ) } ) |
|
| 117 | 116 | eleq1d | |- ( ( W ` N ) = ( W ` 0 ) -> ( { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 118 | 117 | adantl | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( { ( W ` ( N - 1 ) ) , ( W ` N ) } e. ( Edg ` G ) <-> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) ) |
| 119 | 115 118 | mpbid | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> { ( W ` ( N - 1 ) ) , ( W ` 0 ) } e. ( Edg ` G ) ) |
| 120 | 93 119 | eqeltrd | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } e. ( Edg ` G ) ) |
| 121 | 26 79 120 | 3jca | |- ( ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( ( ( W prefix N ) e. Word ( Vtx ` G ) /\ ( W prefix N ) =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } e. ( Edg ` G ) ) ) |
| 122 | 121 | exp31 | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( ( W ` N ) = ( W ` 0 ) -> ( ( ( W prefix N ) e. Word ( Vtx ` G ) /\ ( W prefix N ) =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } e. ( Edg ` G ) ) ) ) ) |
| 123 | 122 | 3imp21 | |- ( ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( ( ( W prefix N ) e. Word ( Vtx ` G ) /\ ( W prefix N ) =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } e. ( Edg ` G ) ) ) |
| 124 | 1 2 | isclwwlk | |- ( ( W prefix N ) e. ( ClWWalks ` G ) <-> ( ( ( W prefix N ) e. Word ( Vtx ` G ) /\ ( W prefix N ) =/= (/) ) /\ A. i e. ( 0 ..^ ( ( # ` ( W prefix N ) ) - 1 ) ) { ( ( W prefix N ) ` i ) , ( ( W prefix N ) ` ( i + 1 ) ) } e. ( Edg ` G ) /\ { ( lastS ` ( W prefix N ) ) , ( ( W prefix N ) ` 0 ) } e. ( Edg ` G ) ) ) |
| 125 | 123 124 | sylibr | |- ( ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( W prefix N ) e. ( ClWWalks ` G ) ) |
| 126 | 47 | adantl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ( 0 ... M ) ) |
| 127 | 126 48 | syl | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ( 0 ... ( M + 1 ) ) ) |
| 128 | 127 53 | mpbird | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> N e. ( 0 ... ( # ` W ) ) ) |
| 129 | 7 128 | jca | |- ( ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) /\ ( N e. NN /\ M e. ( ZZ>= ` N ) ) ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) |
| 130 | 129 | ex | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) ) -> ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) ) |
| 131 | 130 | 3adant3 | |- ( ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) -> ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) ) |
| 132 | 131 | impcom | |- ( ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) |
| 133 | 132 | 3adant3 | |- ( ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( W e. Word ( Vtx ` G ) /\ N e. ( 0 ... ( # ` W ) ) ) ) |
| 134 | 133 55 | syl | |- ( ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( # ` ( W prefix N ) ) = N ) |
| 135 | isclwwlkn | |- ( ( W prefix N ) e. ( N ClWWalksN G ) <-> ( ( W prefix N ) e. ( ClWWalks ` G ) /\ ( # ` ( W prefix N ) ) = N ) ) |
|
| 136 | 125 134 135 | sylanbrc | |- ( ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) /\ ( W e. Word ( Vtx ` G ) /\ ( # ` W ) = ( M + 1 ) /\ A. i e. ( 0 ..^ M ) { ( W ` i ) , ( W ` ( i + 1 ) ) } e. ( Edg ` G ) ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( W prefix N ) e. ( N ClWWalksN G ) ) |
| 137 | 3 136 | syl3an2 | |- ( ( ( N e. NN /\ M e. ( ZZ>= ` N ) ) /\ W e. ( M WWalksN G ) /\ ( W ` N ) = ( W ` 0 ) ) -> ( W prefix N ) e. ( N ClWWalksN G ) ) |