This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The first symbol of a prefix is the first symbol of the word. (Contributed by Alexander van der Vekens, 16-Jun-2018) (Revised by AV, 3-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxfv0 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 2 | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) | |
| 3 | 2 | sseli | ⊢ ( 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 4 | 3 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 5 | elfznn | ⊢ ( 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ ) | |
| 6 | 5 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ℕ ) |
| 7 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 𝐿 ) ↔ 𝐿 ∈ ℕ ) | |
| 8 | 6 7 | sylibr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 0 ∈ ( 0 ..^ 𝐿 ) ) |
| 9 | pfxfv | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 0 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) | |
| 10 | 1 4 8 9 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 0 ) = ( 𝑊 ‘ 0 ) ) |