This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A closed walk of length 1 represented as word is a word consisting of 1 symbol representing a vertex connected to itself by (at least) one edge, that is, a loop. (Contributed by AV, 24-Apr-2021) (Revised by AV, 11-Feb-2022)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | clwwlkn1 | ⊢ ( 𝑊 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1nn | ⊢ 1 ∈ ℕ | |
| 2 | eqid | ⊢ ( Vtx ‘ 𝐺 ) = ( Vtx ‘ 𝐺 ) | |
| 3 | eqid | ⊢ ( Edg ‘ 𝐺 ) = ( Edg ‘ 𝐺 ) | |
| 4 | 2 3 | isclwwlknx | ⊢ ( 1 ∈ ℕ → ( 𝑊 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) ) ) |
| 5 | 1 4 | ax-mp | ⊢ ( 𝑊 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) ) |
| 6 | 3anass | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) | |
| 7 | ral0 | ⊢ ∀ 𝑖 ∈ ∅ { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) | |
| 8 | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( 1 − 1 ) ) | |
| 9 | 1m1e0 | ⊢ ( 1 − 1 ) = 0 | |
| 10 | 8 9 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ( ♯ ‘ 𝑊 ) − 1 ) = 0 ) |
| 11 | 10 | oveq2d | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 0 ..^ 0 ) ) |
| 12 | fzo0 | ⊢ ( 0 ..^ 0 ) = ∅ | |
| 13 | 11 12 | eqtrdi | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ∅ ) |
| 14 | 13 | raleqdv | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ∅ { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 15 | 14 | adantr | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ↔ ∀ 𝑖 ∈ ∅ { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 16 | 7 15 | mpbiri | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ) |
| 17 | 16 | biantrurd | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 18 | lsw1 | ⊢ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ 0 ) ) | |
| 19 | 18 | ancoms | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( lastS ‘ 𝑊 ) = ( 𝑊 ‘ 0 ) ) |
| 20 | 19 | preq1d | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } = { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } ) |
| 21 | dfsn2 | ⊢ { ( 𝑊 ‘ 0 ) } = { ( 𝑊 ‘ 0 ) , ( 𝑊 ‘ 0 ) } | |
| 22 | 20 21 | eqtr4di | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } = { ( 𝑊 ‘ 0 ) } ) |
| 23 | 22 | eleq1d | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ↔ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 24 | 17 23 | bitr3d | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ) → ( ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 25 | 24 | pm5.32da | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 26 | 6 25 | bitrid | ⊢ ( ( ♯ ‘ 𝑊 ) = 1 → ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) |
| 27 | 26 | pm5.32ri | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ ( Edg ‘ 𝐺 ) ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) ) |
| 28 | 3anass | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ↔ ( ( ♯ ‘ 𝑊 ) = 1 ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ) | |
| 29 | ancom | ⊢ ( ( ( ♯ ‘ 𝑊 ) = 1 ∧ ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) ↔ ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) ) | |
| 30 | 28 29 | bitr2i | ⊢ ( ( ( 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ∧ ( ♯ ‘ 𝑊 ) = 1 ) ↔ ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |
| 31 | 5 27 30 | 3bitri | ⊢ ( 𝑊 ∈ ( 1 ClWWalksN 𝐺 ) ↔ ( ( ♯ ‘ 𝑊 ) = 1 ∧ 𝑊 ∈ Word ( Vtx ‘ 𝐺 ) ∧ { ( 𝑊 ‘ 0 ) } ∈ ( Edg ‘ 𝐺 ) ) ) |