This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a word to represent a closed walk (in an undirected graph). (Contributed by Alexander van der Vekens, 20-Mar-2018) (Revised by AV, 24-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | clwwlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| clwwlk.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | isclwwlk | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | clwwlk.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | clwwlk.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | neeq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ≠ ∅ ↔ 𝑊 ≠ ∅ ) ) | |
| 4 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( ♯ ‘ 𝑤 ) = ( ♯ ‘ 𝑊 ) ) | |
| 5 | 4 | oveq1d | ⊢ ( 𝑤 = 𝑊 → ( ( ♯ ‘ 𝑤 ) − 1 ) = ( ( ♯ ‘ 𝑊 ) − 1 ) ) |
| 6 | 5 | oveq2d | ⊢ ( 𝑤 = 𝑊 → ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) = ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) ) |
| 7 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 𝑖 ) = ( 𝑊 ‘ 𝑖 ) ) | |
| 8 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ ( 𝑖 + 1 ) ) = ( 𝑊 ‘ ( 𝑖 + 1 ) ) ) | |
| 9 | 7 8 | preq12d | ⊢ ( 𝑤 = 𝑊 → { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } = { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ) |
| 10 | 9 | eleq1d | ⊢ ( 𝑤 = 𝑊 → ( { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ↔ { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 11 | 6 10 | raleqbidv | ⊢ ( 𝑤 = 𝑊 → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ↔ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 12 | fveq2 | ⊢ ( 𝑤 = 𝑊 → ( lastS ‘ 𝑤 ) = ( lastS ‘ 𝑊 ) ) | |
| 13 | fveq1 | ⊢ ( 𝑤 = 𝑊 → ( 𝑤 ‘ 0 ) = ( 𝑊 ‘ 0 ) ) | |
| 14 | 12 13 | preq12d | ⊢ ( 𝑤 = 𝑊 → { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } = { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ) |
| 15 | 14 | eleq1d | ⊢ ( 𝑤 = 𝑊 → ( { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ↔ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) |
| 16 | 3 11 15 | 3anbi123d | ⊢ ( 𝑤 = 𝑊 → ( ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
| 17 | 16 | elrab | ⊢ ( 𝑊 ∈ { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
| 18 | 1 2 | clwwlk | ⊢ ( ClWWalks ‘ 𝐺 ) = { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } |
| 19 | 18 | eleq2i | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ 𝑊 ∈ { 𝑤 ∈ Word 𝑉 ∣ ( 𝑤 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑤 ) − 1 ) ) { ( 𝑤 ‘ 𝑖 ) , ( 𝑤 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑤 ) , ( 𝑤 ‘ 0 ) } ∈ 𝐸 ) } ) |
| 20 | 3anass | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) | |
| 21 | anass | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ) | |
| 22 | 3anass | ⊢ ( ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) | |
| 23 | 22 | bicomi | ⊢ ( ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ↔ ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) |
| 24 | 23 | anbi2i | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
| 25 | 20 21 24 | 3bitri | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ↔ ( 𝑊 ∈ Word 𝑉 ∧ ( 𝑊 ≠ ∅ ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) ) |
| 26 | 17 19 25 | 3bitr4i | ⊢ ( 𝑊 ∈ ( ClWWalks ‘ 𝐺 ) ↔ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝑊 ≠ ∅ ) ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ∧ { ( lastS ‘ 𝑊 ) , ( 𝑊 ‘ 0 ) } ∈ 𝐸 ) ) |