This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The last symbol in a nonempty prefix of a word. (Contributed by Alexander van der Vekens, 24-Jun-2018) (Revised by AV, 3-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxfvlsw | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 prefix 𝐿 ) ) = ( 𝑊 ‘ ( 𝐿 − 1 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pfxcl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝑊 prefix 𝐿 ) ∈ Word 𝑉 ) | |
| 2 | 1 | adantr | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) ∈ Word 𝑉 ) |
| 3 | lsw | ⊢ ( ( 𝑊 prefix 𝐿 ) ∈ Word 𝑉 → ( lastS ‘ ( 𝑊 prefix 𝐿 ) ) = ( ( 𝑊 prefix 𝐿 ) ‘ ( ( ♯ ‘ ( 𝑊 prefix 𝐿 ) ) − 1 ) ) ) | |
| 4 | 2 3 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 prefix 𝐿 ) ) = ( ( 𝑊 prefix 𝐿 ) ‘ ( ( ♯ ‘ ( 𝑊 prefix 𝐿 ) ) − 1 ) ) ) |
| 5 | fz1ssfz0 | ⊢ ( 1 ... ( ♯ ‘ 𝑊 ) ) ⊆ ( 0 ... ( ♯ ‘ 𝑊 ) ) | |
| 6 | 5 | sseli | ⊢ ( 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 7 | pfxlen | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝐿 ) ) = 𝐿 ) | |
| 8 | 6 7 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ♯ ‘ ( 𝑊 prefix 𝐿 ) ) = 𝐿 ) |
| 9 | 8 | fvoveq1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ ( ( ♯ ‘ ( 𝑊 prefix 𝐿 ) ) − 1 ) ) = ( ( 𝑊 prefix 𝐿 ) ‘ ( 𝐿 − 1 ) ) ) |
| 10 | simpl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 11 | 6 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 12 | elfznn | ⊢ ( 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ ) | |
| 13 | fzo0end | ⊢ ( 𝐿 ∈ ℕ → ( 𝐿 − 1 ) ∈ ( 0 ..^ 𝐿 ) ) | |
| 14 | 12 13 | syl | ⊢ ( 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐿 − 1 ) ∈ ( 0 ..^ 𝐿 ) ) |
| 15 | 14 | adantl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝐿 − 1 ) ∈ ( 0 ..^ 𝐿 ) ) |
| 16 | pfxfv | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ ( 𝐿 − 1 ) ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ ( 𝐿 − 1 ) ) = ( 𝑊 ‘ ( 𝐿 − 1 ) ) ) | |
| 17 | 10 11 15 16 | syl3anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ ( 𝐿 − 1 ) ) = ( 𝑊 ‘ ( 𝐿 − 1 ) ) ) |
| 18 | 4 9 17 | 3eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 1 ... ( ♯ ‘ 𝑊 ) ) ) → ( lastS ‘ ( 𝑊 prefix 𝐿 ) ) = ( 𝑊 ‘ ( 𝐿 − 1 ) ) ) |