This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A prefix consisting of at least one symbol is not empty. (Contributed by Alexander van der Vekens, 4-Aug-2018) (Revised by AV, 2-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxn0 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) ≠ ∅ ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | lbfzo0 | ⊢ ( 0 ∈ ( 0 ..^ 𝐿 ) ↔ 𝐿 ∈ ℕ ) | |
| 2 | ne0i | ⊢ ( 0 ∈ ( 0 ..^ 𝐿 ) → ( 0 ..^ 𝐿 ) ≠ ∅ ) | |
| 3 | 1 2 | sylbir | ⊢ ( 𝐿 ∈ ℕ → ( 0 ..^ 𝐿 ) ≠ ∅ ) |
| 4 | 3 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 0 ..^ 𝐿 ) ≠ ∅ ) |
| 5 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 6 | nnnn0 | ⊢ ( 𝐿 ∈ ℕ → 𝐿 ∈ ℕ0 ) | |
| 7 | 6 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ0 ) |
| 8 | lencl | ⊢ ( 𝑊 ∈ Word 𝑉 → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) | |
| 9 | 8 | 3ad2ant1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ♯ ‘ 𝑊 ) ∈ ℕ0 ) |
| 10 | simp3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) | |
| 11 | elfz2nn0 | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ↔ ( 𝐿 ∈ ℕ0 ∧ ( ♯ ‘ 𝑊 ) ∈ ℕ0 ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) ) | |
| 12 | 7 9 10 11 | syl3anbrc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) |
| 13 | pfxf | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 ) | |
| 14 | 5 12 13 | syl2anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 ) |
| 15 | f0dom0 | ⊢ ( ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 → ( ( 0 ..^ 𝐿 ) = ∅ ↔ ( 𝑊 prefix 𝐿 ) = ∅ ) ) | |
| 16 | 15 | bicomd | ⊢ ( ( 𝑊 prefix 𝐿 ) : ( 0 ..^ 𝐿 ) ⟶ 𝑉 → ( ( 𝑊 prefix 𝐿 ) = ∅ ↔ ( 0 ..^ 𝐿 ) = ∅ ) ) |
| 17 | 14 16 | syl | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 prefix 𝐿 ) = ∅ ↔ ( 0 ..^ 𝐿 ) = ∅ ) ) |
| 18 | 17 | necon3bid | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( ( 𝑊 prefix 𝐿 ) ≠ ∅ ↔ ( 0 ..^ 𝐿 ) ≠ ∅ ) ) |
| 19 | 4 18 | mpbird | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ ∧ 𝐿 ≤ ( ♯ ‘ 𝑊 ) ) → ( 𝑊 prefix 𝐿 ) ≠ ∅ ) |