This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A symbol in a prefix of a word, indexed using the prefix' indices. (Contributed by Alexander van der Vekens, 16-Jun-2018) (Revised by AV, 3-May-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | pfxfv | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elfznn0 | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℕ0 ) | |
| 2 | pfxval | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ℕ0 ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) | |
| 3 | 1 2 | sylan2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
| 4 | 3 | 3adant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑊 prefix 𝐿 ) = ( 𝑊 substr 〈 0 , 𝐿 〉 ) ) |
| 5 | 4 | fveq1d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 𝐼 ) = ( ( 𝑊 substr 〈 0 , 𝐿 〉 ) ‘ 𝐼 ) ) |
| 6 | simp1 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 7 | 0elfz | ⊢ ( 𝐿 ∈ ℕ0 → 0 ∈ ( 0 ... 𝐿 ) ) | |
| 8 | 1 7 | syl | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 0 ∈ ( 0 ... 𝐿 ) ) |
| 9 | 8 | 3ad2ant2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → 0 ∈ ( 0 ... 𝐿 ) ) |
| 10 | simp2 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) | |
| 11 | 1 | nn0cnd | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 ∈ ℂ ) |
| 12 | 11 | subid1d | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐿 − 0 ) = 𝐿 ) |
| 13 | 12 | eqcomd | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → 𝐿 = ( 𝐿 − 0 ) ) |
| 14 | 13 | oveq2d | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 0 ..^ 𝐿 ) = ( 0 ..^ ( 𝐿 − 0 ) ) ) |
| 15 | 14 | eleq2d | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( 0 ..^ 𝐿 ) ↔ 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) ) |
| 16 | 15 | biimpd | ⊢ ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) ) |
| 17 | 16 | a1i | ⊢ ( 𝑊 ∈ Word 𝑉 → ( 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) → ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) ) ) |
| 18 | 17 | 3imp | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) |
| 19 | swrdfv | ⊢ ( ( ( 𝑊 ∈ Word 𝑉 ∧ 0 ∈ ( 0 ... 𝐿 ) ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ) ∧ 𝐼 ∈ ( 0 ..^ ( 𝐿 − 0 ) ) ) → ( ( 𝑊 substr 〈 0 , 𝐿 〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ ( 𝐼 + 0 ) ) ) | |
| 20 | 6 9 10 18 19 | syl31anc | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 substr 〈 0 , 𝐿 〉 ) ‘ 𝐼 ) = ( 𝑊 ‘ ( 𝐼 + 0 ) ) ) |
| 21 | elfzoelz | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ℤ ) | |
| 22 | 21 | zcnd | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → 𝐼 ∈ ℂ ) |
| 23 | 22 | addridd | ⊢ ( 𝐼 ∈ ( 0 ..^ 𝐿 ) → ( 𝐼 + 0 ) = 𝐼 ) |
| 24 | 23 | 3ad2ant3 | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝐼 + 0 ) = 𝐼 ) |
| 25 | 24 | fveq2d | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( 𝑊 ‘ ( 𝐼 + 0 ) ) = ( 𝑊 ‘ 𝐼 ) ) |
| 26 | 5 20 25 | 3eqtrd | ⊢ ( ( 𝑊 ∈ Word 𝑉 ∧ 𝐿 ∈ ( 0 ... ( ♯ ‘ 𝑊 ) ) ∧ 𝐼 ∈ ( 0 ..^ 𝐿 ) ) → ( ( 𝑊 prefix 𝐿 ) ‘ 𝐼 ) = ( 𝑊 ‘ 𝐼 ) ) |