This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Properties of a set being a walk of length n (represented by a word). (Contributed by Alexander van der Vekens, 17-Jun-2018) (Revised by AV, 9-Apr-2021)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | wwlkbp.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| wwlknp.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | ||
| Assertion | wwlknp | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | wwlkbp.v | ⊢ 𝑉 = ( Vtx ‘ 𝐺 ) | |
| 2 | wwlknp.e | ⊢ 𝐸 = ( Edg ‘ 𝐺 ) | |
| 3 | 1 | wwlknbp | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) ) |
| 4 | iswwlksn | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) ↔ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) ) ) | |
| 5 | 1 2 | iswwlks | ⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ↔ ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 6 | simpl2 | ⊢ ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) ) → 𝑊 ∈ Word 𝑉 ) | |
| 7 | simprl | ⊢ ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) ) → ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) | |
| 8 | oveq1 | ⊢ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = ( ( 𝑁 + 1 ) − 1 ) ) | |
| 9 | nn0cn | ⊢ ( 𝑁 ∈ ℕ0 → 𝑁 ∈ ℂ ) | |
| 10 | pncan1 | ⊢ ( 𝑁 ∈ ℂ → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) | |
| 11 | 9 10 | syl | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑁 + 1 ) − 1 ) = 𝑁 ) |
| 12 | 8 11 | sylan9eq | ⊢ ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( ( ♯ ‘ 𝑊 ) − 1 ) = 𝑁 ) |
| 13 | 12 | oveq2d | ⊢ ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) = ( 0 ..^ 𝑁 ) ) |
| 14 | 13 | raleqdv | ⊢ ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ↔ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 15 | 14 | biimpcd | ⊢ ( ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 → ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 16 | 15 | 3ad2ant3 | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) → ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 17 | 16 | imp | ⊢ ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) ) → ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) |
| 18 | 6 7 17 | 3jca | ⊢ ( ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ∧ ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |
| 19 | 18 | ex | ⊢ ( ( 𝑊 ≠ ∅ ∧ 𝑊 ∈ Word 𝑉 ∧ ∀ 𝑖 ∈ ( 0 ..^ ( ( ♯ ‘ 𝑊 ) − 1 ) ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) → ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 20 | 5 19 | sylbi | ⊢ ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) → ( ( ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ 𝑁 ∈ ℕ0 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 21 | 20 | expdimp | ⊢ ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 22 | 21 | com12 | ⊢ ( 𝑁 ∈ ℕ0 → ( ( 𝑊 ∈ ( WWalks ‘ 𝐺 ) ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 23 | 4 22 | sylbid | ⊢ ( 𝑁 ∈ ℕ0 → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 24 | 23 | 3ad2ant2 | ⊢ ( ( 𝐺 ∈ V ∧ 𝑁 ∈ ℕ0 ∧ 𝑊 ∈ Word 𝑉 ) → ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) ) |
| 25 | 3 24 | mpcom | ⊢ ( 𝑊 ∈ ( 𝑁 WWalksN 𝐺 ) → ( 𝑊 ∈ Word 𝑉 ∧ ( ♯ ‘ 𝑊 ) = ( 𝑁 + 1 ) ∧ ∀ 𝑖 ∈ ( 0 ..^ 𝑁 ) { ( 𝑊 ‘ 𝑖 ) , ( 𝑊 ‘ ( 𝑖 + 1 ) ) } ∈ 𝐸 ) ) |