This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance over a set with one element added. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | domunsn | ⊢ ( 𝐴 ≺ 𝐵 → ( 𝐴 ∪ { 𝐶 } ) ≼ 𝐵 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | sdom0 | ⊢ ¬ 𝐴 ≺ ∅ | |
| 2 | breq2 | ⊢ ( 𝐵 = ∅ → ( 𝐴 ≺ 𝐵 ↔ 𝐴 ≺ ∅ ) ) | |
| 3 | 1 2 | mtbiri | ⊢ ( 𝐵 = ∅ → ¬ 𝐴 ≺ 𝐵 ) |
| 4 | 3 | con2i | ⊢ ( 𝐴 ≺ 𝐵 → ¬ 𝐵 = ∅ ) |
| 5 | neq0 | ⊢ ( ¬ 𝐵 = ∅ ↔ ∃ 𝑧 𝑧 ∈ 𝐵 ) | |
| 6 | 4 5 | sylib | ⊢ ( 𝐴 ≺ 𝐵 → ∃ 𝑧 𝑧 ∈ 𝐵 ) |
| 7 | domdifsn | ⊢ ( 𝐴 ≺ 𝐵 → 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ) | |
| 8 | 7 | adantr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ) |
| 9 | en2sn | ⊢ ( ( 𝐶 ∈ V ∧ 𝑧 ∈ V ) → { 𝐶 } ≈ { 𝑧 } ) | |
| 10 | 9 | elvd | ⊢ ( 𝐶 ∈ V → { 𝐶 } ≈ { 𝑧 } ) |
| 11 | endom | ⊢ ( { 𝐶 } ≈ { 𝑧 } → { 𝐶 } ≼ { 𝑧 } ) | |
| 12 | 10 11 | syl | ⊢ ( 𝐶 ∈ V → { 𝐶 } ≼ { 𝑧 } ) |
| 13 | snprc | ⊢ ( ¬ 𝐶 ∈ V ↔ { 𝐶 } = ∅ ) | |
| 14 | 13 | biimpi | ⊢ ( ¬ 𝐶 ∈ V → { 𝐶 } = ∅ ) |
| 15 | vsnex | ⊢ { 𝑧 } ∈ V | |
| 16 | 15 | 0dom | ⊢ ∅ ≼ { 𝑧 } |
| 17 | 14 16 | eqbrtrdi | ⊢ ( ¬ 𝐶 ∈ V → { 𝐶 } ≼ { 𝑧 } ) |
| 18 | 12 17 | pm2.61i | ⊢ { 𝐶 } ≼ { 𝑧 } |
| 19 | disjdifr | ⊢ ( ( 𝐵 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ | |
| 20 | undom | ⊢ ( ( ( 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ∧ { 𝐶 } ≼ { 𝑧 } ) ∧ ( ( 𝐵 ∖ { 𝑧 } ) ∩ { 𝑧 } ) = ∅ ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) | |
| 21 | 19 20 | mpan2 | ⊢ ( ( 𝐴 ≼ ( 𝐵 ∖ { 𝑧 } ) ∧ { 𝐶 } ≼ { 𝑧 } ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
| 22 | 8 18 21 | sylancl | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐴 ∪ { 𝐶 } ) ≼ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) ) |
| 23 | uncom | ⊢ ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) ) | |
| 24 | simpr | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → 𝑧 ∈ 𝐵 ) | |
| 25 | 24 | snssd | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → { 𝑧 } ⊆ 𝐵 ) |
| 26 | undif | ⊢ ( { 𝑧 } ⊆ 𝐵 ↔ ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) ) = 𝐵 ) | |
| 27 | 25 26 | sylib | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( { 𝑧 } ∪ ( 𝐵 ∖ { 𝑧 } ) ) = 𝐵 ) |
| 28 | 23 27 | eqtrid | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( ( 𝐵 ∖ { 𝑧 } ) ∪ { 𝑧 } ) = 𝐵 ) |
| 29 | 22 28 | breqtrd | ⊢ ( ( 𝐴 ≺ 𝐵 ∧ 𝑧 ∈ 𝐵 ) → ( 𝐴 ∪ { 𝐶 } ) ≼ 𝐵 ) |
| 30 | 6 29 | exlimddv | ⊢ ( 𝐴 ≺ 𝐵 → ( 𝐴 ∪ { 𝐶 } ) ≼ 𝐵 ) |