This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Equinumerosity of a disjoint union and a union of two disjoint sets. (Contributed by NM, 5-Apr-2007)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | endjudisj | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ 𝑉 ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 4 | 2 3 | mpan | ⊢ ( 𝐴 ∈ 𝑉 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 5 | 1on | ⊢ 1o ∈ On | |
| 6 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ 𝑊 ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) | |
| 7 | 5 6 | mpan | ⊢ ( 𝐵 ∈ 𝑊 → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
| 8 | 4 7 | anim12i | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) → ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) ) |
| 9 | xp01disjl | ⊢ ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ | |
| 10 | 9 | jctl | ⊢ ( ( 𝐴 ∩ 𝐵 ) = ∅ → ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) |
| 11 | unen | ⊢ ( ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) ∧ ( ( ( { ∅ } × 𝐴 ) ∩ ( { 1o } × 𝐵 ) ) = ∅ ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) ) | |
| 12 | 8 10 11 | syl2an | ⊢ ( ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ) ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| 13 | 12 | 3impa | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 ∪ 𝐵 ) ) |
| 14 | 1 13 | eqbrtrid | ⊢ ( ( 𝐴 ∈ 𝑉 ∧ 𝐵 ∈ 𝑊 ∧ ( 𝐴 ∩ 𝐵 ) = ∅ ) → ( 𝐴 ⊔ 𝐵 ) ≈ ( 𝐴 ∪ 𝐵 ) ) |