This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Cartesian product dominates disjoint union for sets with cardinality greater than 1. Similar to Proposition 10.36 of TakeutiZaring p. 93. (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | djuxpdom | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | df-dju | ⊢ ( 𝐴 ⊔ 𝐵 ) = ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) | |
| 2 | 0ex | ⊢ ∅ ∈ V | |
| 3 | relsdom | ⊢ Rel ≺ | |
| 4 | 3 | brrelex2i | ⊢ ( 1o ≺ 𝐴 → 𝐴 ∈ V ) |
| 5 | xpsnen2g | ⊢ ( ( ∅ ∈ V ∧ 𝐴 ∈ V ) → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) | |
| 6 | 2 4 5 | sylancr | ⊢ ( 1o ≺ 𝐴 → ( { ∅ } × 𝐴 ) ≈ 𝐴 ) |
| 7 | sdomen2 | ⊢ ( ( { ∅ } × 𝐴 ) ≈ 𝐴 → ( 1o ≺ ( { ∅ } × 𝐴 ) ↔ 1o ≺ 𝐴 ) ) | |
| 8 | 6 7 | syl | ⊢ ( 1o ≺ 𝐴 → ( 1o ≺ ( { ∅ } × 𝐴 ) ↔ 1o ≺ 𝐴 ) ) |
| 9 | 8 | ibir | ⊢ ( 1o ≺ 𝐴 → 1o ≺ ( { ∅ } × 𝐴 ) ) |
| 10 | 1on | ⊢ 1o ∈ On | |
| 11 | 3 | brrelex2i | ⊢ ( 1o ≺ 𝐵 → 𝐵 ∈ V ) |
| 12 | xpsnen2g | ⊢ ( ( 1o ∈ On ∧ 𝐵 ∈ V ) → ( { 1o } × 𝐵 ) ≈ 𝐵 ) | |
| 13 | 10 11 12 | sylancr | ⊢ ( 1o ≺ 𝐵 → ( { 1o } × 𝐵 ) ≈ 𝐵 ) |
| 14 | sdomen2 | ⊢ ( ( { 1o } × 𝐵 ) ≈ 𝐵 → ( 1o ≺ ( { 1o } × 𝐵 ) ↔ 1o ≺ 𝐵 ) ) | |
| 15 | 13 14 | syl | ⊢ ( 1o ≺ 𝐵 → ( 1o ≺ ( { 1o } × 𝐵 ) ↔ 1o ≺ 𝐵 ) ) |
| 16 | 15 | ibir | ⊢ ( 1o ≺ 𝐵 → 1o ≺ ( { 1o } × 𝐵 ) ) |
| 17 | unxpdom | ⊢ ( ( 1o ≺ ( { ∅ } × 𝐴 ) ∧ 1o ≺ ( { 1o } × 𝐵 ) ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≼ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ) | |
| 18 | 9 16 17 | syl2an | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( ( { ∅ } × 𝐴 ) ∪ ( { 1o } × 𝐵 ) ) ≼ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ) |
| 19 | 1 18 | eqbrtrid | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ) |
| 20 | xpen | ⊢ ( ( ( { ∅ } × 𝐴 ) ≈ 𝐴 ∧ ( { 1o } × 𝐵 ) ≈ 𝐵 ) → ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 × 𝐵 ) ) | |
| 21 | 6 13 20 | syl2an | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 × 𝐵 ) ) |
| 22 | domentr | ⊢ ( ( ( 𝐴 ⊔ 𝐵 ) ≼ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ∧ ( ( { ∅ } × 𝐴 ) × ( { 1o } × 𝐵 ) ) ≈ ( 𝐴 × 𝐵 ) ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) | |
| 23 | 19 21 22 | syl2anc | ⊢ ( ( 1o ≺ 𝐴 ∧ 1o ≺ 𝐵 ) → ( 𝐴 ⊔ 𝐵 ) ≼ ( 𝐴 × 𝐵 ) ) |