This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for canthp1 . (Contributed by Mario Carneiro, 18-May-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | canthp1lem1 | |- ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1sdom2 | |- 1o ~< 2o |
|
| 2 | djuxpdom | |- ( ( 1o ~< A /\ 1o ~< 2o ) -> ( A |_| 2o ) ~<_ ( A X. 2o ) ) |
|
| 3 | 1 2 | mpan2 | |- ( 1o ~< A -> ( A |_| 2o ) ~<_ ( A X. 2o ) ) |
| 4 | sdom0 | |- -. 1o ~< (/) |
|
| 5 | breq2 | |- ( A = (/) -> ( 1o ~< A <-> 1o ~< (/) ) ) |
|
| 6 | 4 5 | mtbiri | |- ( A = (/) -> -. 1o ~< A ) |
| 7 | 6 | con2i | |- ( 1o ~< A -> -. A = (/) ) |
| 8 | neq0 | |- ( -. A = (/) <-> E. x x e. A ) |
|
| 9 | 7 8 | sylib | |- ( 1o ~< A -> E. x x e. A ) |
| 10 | relsdom | |- Rel ~< |
|
| 11 | 10 | brrelex2i | |- ( 1o ~< A -> A e. _V ) |
| 12 | 11 | adantr | |- ( ( 1o ~< A /\ x e. A ) -> A e. _V ) |
| 13 | enrefg | |- ( A e. _V -> A ~~ A ) |
|
| 14 | 12 13 | syl | |- ( ( 1o ~< A /\ x e. A ) -> A ~~ A ) |
| 15 | df2o2 | |- 2o = { (/) , { (/) } } |
|
| 16 | pwpw0 | |- ~P { (/) } = { (/) , { (/) } } |
|
| 17 | 15 16 | eqtr4i | |- 2o = ~P { (/) } |
| 18 | 0ex | |- (/) e. _V |
|
| 19 | vex | |- x e. _V |
|
| 20 | en2sn | |- ( ( (/) e. _V /\ x e. _V ) -> { (/) } ~~ { x } ) |
|
| 21 | 18 19 20 | mp2an | |- { (/) } ~~ { x } |
| 22 | pwen | |- ( { (/) } ~~ { x } -> ~P { (/) } ~~ ~P { x } ) |
|
| 23 | 21 22 | ax-mp | |- ~P { (/) } ~~ ~P { x } |
| 24 | 17 23 | eqbrtri | |- 2o ~~ ~P { x } |
| 25 | xpen | |- ( ( A ~~ A /\ 2o ~~ ~P { x } ) -> ( A X. 2o ) ~~ ( A X. ~P { x } ) ) |
|
| 26 | 14 24 25 | sylancl | |- ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~~ ( A X. ~P { x } ) ) |
| 27 | vsnex | |- { x } e. _V |
|
| 28 | 27 | pwex | |- ~P { x } e. _V |
| 29 | uncom | |- ( ( A \ { x } ) u. { x } ) = ( { x } u. ( A \ { x } ) ) |
|
| 30 | simpr | |- ( ( 1o ~< A /\ x e. A ) -> x e. A ) |
|
| 31 | 30 | snssd | |- ( ( 1o ~< A /\ x e. A ) -> { x } C_ A ) |
| 32 | undif | |- ( { x } C_ A <-> ( { x } u. ( A \ { x } ) ) = A ) |
|
| 33 | 31 32 | sylib | |- ( ( 1o ~< A /\ x e. A ) -> ( { x } u. ( A \ { x } ) ) = A ) |
| 34 | 29 33 | eqtrid | |- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) u. { x } ) = A ) |
| 35 | 12 | difexd | |- ( ( 1o ~< A /\ x e. A ) -> ( A \ { x } ) e. _V ) |
| 36 | canth2g | |- ( ( A \ { x } ) e. _V -> ( A \ { x } ) ~< ~P ( A \ { x } ) ) |
|
| 37 | domunsn | |- ( ( A \ { x } ) ~< ~P ( A \ { x } ) -> ( ( A \ { x } ) u. { x } ) ~<_ ~P ( A \ { x } ) ) |
|
| 38 | 35 36 37 | 3syl | |- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) u. { x } ) ~<_ ~P ( A \ { x } ) ) |
| 39 | 34 38 | eqbrtrrd | |- ( ( 1o ~< A /\ x e. A ) -> A ~<_ ~P ( A \ { x } ) ) |
| 40 | xpdom1g | |- ( ( ~P { x } e. _V /\ A ~<_ ~P ( A \ { x } ) ) -> ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
|
| 41 | 28 39 40 | sylancr | |- ( ( 1o ~< A /\ x e. A ) -> ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 42 | endomtr | |- ( ( ( A X. 2o ) ~~ ( A X. ~P { x } ) /\ ( A X. ~P { x } ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) -> ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
|
| 43 | 26 41 42 | syl2anc | |- ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 44 | pwdjuen | |- ( ( ( A \ { x } ) e. _V /\ { x } e. _V ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
|
| 45 | 35 27 44 | sylancl | |- ( ( 1o ~< A /\ x e. A ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ( ~P ( A \ { x } ) X. ~P { x } ) ) |
| 46 | 45 | ensymd | |- ( ( 1o ~< A /\ x e. A ) -> ( ~P ( A \ { x } ) X. ~P { x } ) ~~ ~P ( ( A \ { x } ) |_| { x } ) ) |
| 47 | domentr | |- ( ( ( A X. 2o ) ~<_ ( ~P ( A \ { x } ) X. ~P { x } ) /\ ( ~P ( A \ { x } ) X. ~P { x } ) ~~ ~P ( ( A \ { x } ) |_| { x } ) ) -> ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) ) |
|
| 48 | 43 46 47 | syl2anc | |- ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) ) |
| 49 | 27 | a1i | |- ( ( 1o ~< A /\ x e. A ) -> { x } e. _V ) |
| 50 | disjdifr | |- ( ( A \ { x } ) i^i { x } ) = (/) |
|
| 51 | 50 | a1i | |- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) i^i { x } ) = (/) ) |
| 52 | endjudisj | |- ( ( ( A \ { x } ) e. _V /\ { x } e. _V /\ ( ( A \ { x } ) i^i { x } ) = (/) ) -> ( ( A \ { x } ) |_| { x } ) ~~ ( ( A \ { x } ) u. { x } ) ) |
|
| 53 | 35 49 51 52 | syl3anc | |- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) |_| { x } ) ~~ ( ( A \ { x } ) u. { x } ) ) |
| 54 | 53 34 | breqtrd | |- ( ( 1o ~< A /\ x e. A ) -> ( ( A \ { x } ) |_| { x } ) ~~ A ) |
| 55 | pwen | |- ( ( ( A \ { x } ) |_| { x } ) ~~ A -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A ) |
|
| 56 | 54 55 | syl | |- ( ( 1o ~< A /\ x e. A ) -> ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A ) |
| 57 | domentr | |- ( ( ( A X. 2o ) ~<_ ~P ( ( A \ { x } ) |_| { x } ) /\ ~P ( ( A \ { x } ) |_| { x } ) ~~ ~P A ) -> ( A X. 2o ) ~<_ ~P A ) |
|
| 58 | 48 56 57 | syl2anc | |- ( ( 1o ~< A /\ x e. A ) -> ( A X. 2o ) ~<_ ~P A ) |
| 59 | 9 58 | exlimddv | |- ( 1o ~< A -> ( A X. 2o ) ~<_ ~P A ) |
| 60 | domtr | |- ( ( ( A |_| 2o ) ~<_ ( A X. 2o ) /\ ( A X. 2o ) ~<_ ~P A ) -> ( A |_| 2o ) ~<_ ~P A ) |
|
| 61 | 3 59 60 | syl2anc | |- ( 1o ~< A -> ( A |_| 2o ) ~<_ ~P A ) |