This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Dominance law for Cartesian product. Theorem 6L(c) of Enderton p. 149. (Contributed by NM, 25-Mar-2006) (Revised by Mario Carneiro, 26-Apr-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | xpdom1g | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | reldom | ⊢ Rel ≼ | |
| 2 | 1 | brrelex1i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐴 ∈ V ) |
| 3 | xpcomeng | ⊢ ( ( 𝐴 ∈ V ∧ 𝐶 ∈ 𝑉 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐶 × 𝐴 ) ) | |
| 4 | 3 | ancoms | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ∈ V ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐶 × 𝐴 ) ) |
| 5 | 2 4 | sylan2 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐶 ) ≈ ( 𝐶 × 𝐴 ) ) |
| 6 | xpdom2g | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ) | |
| 7 | 1 | brrelex2i | ⊢ ( 𝐴 ≼ 𝐵 → 𝐵 ∈ V ) |
| 8 | xpcomeng | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐵 ∈ V ) → ( 𝐶 × 𝐵 ) ≈ ( 𝐵 × 𝐶 ) ) | |
| 9 | 7 8 | sylan2 | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐶 × 𝐵 ) ≈ ( 𝐵 × 𝐶 ) ) |
| 10 | domentr | ⊢ ( ( ( 𝐶 × 𝐴 ) ≼ ( 𝐶 × 𝐵 ) ∧ ( 𝐶 × 𝐵 ) ≈ ( 𝐵 × 𝐶 ) ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐵 × 𝐶 ) ) | |
| 11 | 6 9 10 | syl2anc | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐶 × 𝐴 ) ≼ ( 𝐵 × 𝐶 ) ) |
| 12 | endomtr | ⊢ ( ( ( 𝐴 × 𝐶 ) ≈ ( 𝐶 × 𝐴 ) ∧ ( 𝐶 × 𝐴 ) ≼ ( 𝐵 × 𝐶 ) ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) | |
| 13 | 5 11 12 | syl2anc | ⊢ ( ( 𝐶 ∈ 𝑉 ∧ 𝐴 ≼ 𝐵 ) → ( 𝐴 × 𝐶 ) ≼ ( 𝐵 × 𝐶 ) ) |