This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Lemma for axdc3 . We have constructed a "candidate set" S , which consists of all finite sequences s that satisfy our property of interest, namely s ( x + 1 ) e. F ( s ( x ) ) on its domain, but with the added constraint that s ( 0 ) = C . These sets are possible "initial segments" of theinfinite sequence satisfying these constraints, but we can leverage the standard ax-dc (with no initial condition) to select a sequence of ever-lengthening finite sequences, namely ( hn ) : m --> A (for some integer m ). We let our "choice" function select a sequence whose domain is one more than the last one, and agrees with the previous one on its domain. Thus, the application of vanilla ax-dc yields a sequence of sequences whose domains increase without bound, and whose union is a function which has all the properties we want. In this lemma, we show that S is nonempty, and that G always maps to a nonempty subset of S , so that we can apply axdc2 . See axdc3lem2 for the rest of the proof. (Contributed by Mario Carneiro, 27-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | axdc3lem4.1 | ⊢ 𝐴 ∈ V | |
| axdc3lem4.2 | ⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | ||
| axdc3lem4.3 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) | ||
| Assertion | axdc3lem4 | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc3lem4.1 | ⊢ 𝐴 ∈ V | |
| 2 | axdc3lem4.2 | ⊢ 𝑆 = { 𝑠 ∣ ∃ 𝑛 ∈ ω ( 𝑠 : suc 𝑛 ⟶ 𝐴 ∧ ( 𝑠 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑛 ( 𝑠 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑠 ‘ 𝑘 ) ) ) } | |
| 3 | axdc3lem4.3 | ⊢ 𝐺 = ( 𝑥 ∈ 𝑆 ↦ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ) | |
| 4 | peano1 | ⊢ ∅ ∈ ω | |
| 5 | eqid | ⊢ { 〈 ∅ , 𝐶 〉 } = { 〈 ∅ , 𝐶 〉 } | |
| 6 | fsng | ⊢ ( ( ∅ ∈ ω ∧ 𝐶 ∈ 𝐴 ) → ( { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ { 𝐶 } ↔ { 〈 ∅ , 𝐶 〉 } = { 〈 ∅ , 𝐶 〉 } ) ) | |
| 7 | 4 6 | mpan | ⊢ ( 𝐶 ∈ 𝐴 → ( { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ { 𝐶 } ↔ { 〈 ∅ , 𝐶 〉 } = { 〈 ∅ , 𝐶 〉 } ) ) |
| 8 | 5 7 | mpbiri | ⊢ ( 𝐶 ∈ 𝐴 → { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ { 𝐶 } ) |
| 9 | snssi | ⊢ ( 𝐶 ∈ 𝐴 → { 𝐶 } ⊆ 𝐴 ) | |
| 10 | 8 9 | fssd | ⊢ ( 𝐶 ∈ 𝐴 → { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ 𝐴 ) |
| 11 | suc0 | ⊢ suc ∅ = { ∅ } | |
| 12 | 11 | feq2i | ⊢ ( { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ↔ { 〈 ∅ , 𝐶 〉 } : { ∅ } ⟶ 𝐴 ) |
| 13 | 10 12 | sylibr | ⊢ ( 𝐶 ∈ 𝐴 → { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ) |
| 14 | fvsng | ⊢ ( ( ∅ ∈ ω ∧ 𝐶 ∈ 𝐴 ) → ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ) | |
| 15 | 4 14 | mpan | ⊢ ( 𝐶 ∈ 𝐴 → ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ) |
| 16 | ral0 | ⊢ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) | |
| 17 | 16 | a1i | ⊢ ( 𝐶 ∈ 𝐴 → ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) |
| 18 | 13 15 17 | 3jca | ⊢ ( 𝐶 ∈ 𝐴 → ( { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 19 | suceq | ⊢ ( 𝑚 = ∅ → suc 𝑚 = suc ∅ ) | |
| 20 | 19 | feq2d | ⊢ ( 𝑚 = ∅ → ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ↔ { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ) ) |
| 21 | raleq | ⊢ ( 𝑚 = ∅ → ( ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) | |
| 22 | 20 21 | 3anbi13d | ⊢ ( 𝑚 = ∅ → ( ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ↔ ( { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) ) |
| 23 | 22 | rspcev | ⊢ ( ( ∅ ∈ ω ∧ ( { 〈 ∅ , 𝐶 〉 } : suc ∅ ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ∅ ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) → ∃ 𝑚 ∈ ω ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 24 | 4 18 23 | sylancr | ⊢ ( 𝐶 ∈ 𝐴 → ∃ 𝑚 ∈ ω ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 25 | snex | ⊢ { 〈 ∅ , 𝐶 〉 } ∈ V | |
| 26 | 1 2 25 | axdc3lem3 | ⊢ ( { 〈 ∅ , 𝐶 〉 } ∈ 𝑆 ↔ ∃ 𝑚 ∈ ω ( { 〈 ∅ , 𝐶 〉 } : suc 𝑚 ⟶ 𝐴 ∧ ( { 〈 ∅ , 𝐶 〉 } ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( { 〈 ∅ , 𝐶 〉 } ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( { 〈 ∅ , 𝐶 〉 } ‘ 𝑘 ) ) ) ) |
| 27 | 24 26 | sylibr | ⊢ ( 𝐶 ∈ 𝐴 → { 〈 ∅ , 𝐶 〉 } ∈ 𝑆 ) |
| 28 | 27 | ne0d | ⊢ ( 𝐶 ∈ 𝐴 → 𝑆 ≠ ∅ ) |
| 29 | 1 2 | axdc3lem | ⊢ 𝑆 ∈ V |
| 30 | ssrab2 | ⊢ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ⊆ 𝑆 | |
| 31 | 29 30 | elpwi2 | ⊢ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ 𝒫 𝑆 |
| 32 | 31 | a1i | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ 𝒫 𝑆 ) |
| 33 | vex | ⊢ 𝑥 ∈ V | |
| 34 | 1 2 33 | axdc3lem3 | ⊢ ( 𝑥 ∈ 𝑆 ↔ ∃ 𝑚 ∈ ω ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) |
| 35 | simp2 | ⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → 𝑥 : suc 𝑚 ⟶ 𝐴 ) | |
| 36 | vex | ⊢ 𝑚 ∈ V | |
| 37 | 36 | sucid | ⊢ 𝑚 ∈ suc 𝑚 |
| 38 | ffvelcdm | ⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ suc 𝑚 ) → ( 𝑥 ‘ 𝑚 ) ∈ 𝐴 ) | |
| 39 | 37 38 | mpan2 | ⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑥 ‘ 𝑚 ) ∈ 𝐴 ) |
| 40 | ffvelcdm | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑥 ‘ 𝑚 ) ∈ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) | |
| 41 | 39 40 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) ) |
| 42 | eldifn | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ¬ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ { ∅ } ) | |
| 43 | fvex | ⊢ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ V | |
| 44 | 43 | elsn | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ { ∅ } ↔ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) = ∅ ) |
| 45 | 44 | necon3bbii | ⊢ ( ¬ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ { ∅ } ↔ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ≠ ∅ ) |
| 46 | n0 | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ≠ ∅ ↔ ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) | |
| 47 | 45 46 | bitri | ⊢ ( ¬ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ { ∅ } ↔ ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 48 | 42 47 | sylib | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 49 | 41 48 | syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 50 | simp32 | ⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → 𝑥 : suc 𝑚 ⟶ 𝐴 ) | |
| 51 | eldifi | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ 𝒫 𝐴 ) | |
| 52 | elelpwi | ⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ 𝒫 𝐴 ) → 𝑧 ∈ 𝐴 ) | |
| 53 | 52 | expcom | ⊢ ( ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∈ 𝒫 𝐴 → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → 𝑧 ∈ 𝐴 ) ) |
| 54 | 41 51 53 | 3syl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → 𝑧 ∈ 𝐴 ) ) |
| 55 | peano2 | ⊢ ( 𝑚 ∈ ω → suc 𝑚 ∈ ω ) | |
| 56 | 55 | 3ad2ant3 | ⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → suc 𝑚 ∈ ω ) |
| 57 | 56 | 3ad2ant1 | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → suc 𝑚 ∈ ω ) |
| 58 | simplr | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑥 : suc 𝑚 ⟶ 𝐴 ) | |
| 59 | 33 | dmex | ⊢ dom 𝑥 ∈ V |
| 60 | vex | ⊢ 𝑧 ∈ V | |
| 61 | eqid | ⊢ { 〈 dom 𝑥 , 𝑧 〉 } = { 〈 dom 𝑥 , 𝑧 〉 } | |
| 62 | fsng | ⊢ ( ( dom 𝑥 ∈ V ∧ 𝑧 ∈ V ) → ( { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ { 𝑧 } ↔ { 〈 dom 𝑥 , 𝑧 〉 } = { 〈 dom 𝑥 , 𝑧 〉 } ) ) | |
| 63 | 61 62 | mpbiri | ⊢ ( ( dom 𝑥 ∈ V ∧ 𝑧 ∈ V ) → { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ { 𝑧 } ) |
| 64 | 59 60 63 | mp2an | ⊢ { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ { 𝑧 } |
| 65 | simpr | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → 𝑧 ∈ 𝐴 ) | |
| 66 | 65 | snssd | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → { 𝑧 } ⊆ 𝐴 ) |
| 67 | fss | ⊢ ( ( { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ { 𝑧 } ∧ { 𝑧 } ⊆ 𝐴 ) → { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ 𝐴 ) | |
| 68 | 64 66 67 | sylancr | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → { 〈 dom 𝑥 , 𝑧 〉 } : { dom 𝑥 } ⟶ 𝐴 ) |
| 69 | fdm | ⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → dom 𝑥 = suc 𝑚 ) | |
| 70 | 55 | adantr | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → suc 𝑚 ∈ ω ) |
| 71 | eleq1 | ⊢ ( dom 𝑥 = suc 𝑚 → ( dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω ) ) | |
| 72 | 71 | adantl | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( dom 𝑥 ∈ ω ↔ suc 𝑚 ∈ ω ) ) |
| 73 | 70 72 | mpbird | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → dom 𝑥 ∈ ω ) |
| 74 | nnord | ⊢ ( dom 𝑥 ∈ ω → Ord dom 𝑥 ) | |
| 75 | ordirr | ⊢ ( Ord dom 𝑥 → ¬ dom 𝑥 ∈ dom 𝑥 ) | |
| 76 | 73 74 75 | 3syl | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ¬ dom 𝑥 ∈ dom 𝑥 ) |
| 77 | eleq2 | ⊢ ( dom 𝑥 = suc 𝑚 → ( dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚 ) ) | |
| 78 | 77 | adantl | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( dom 𝑥 ∈ dom 𝑥 ↔ dom 𝑥 ∈ suc 𝑚 ) ) |
| 79 | 76 78 | mtbid | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ¬ dom 𝑥 ∈ suc 𝑚 ) |
| 80 | disjsn | ⊢ ( ( suc 𝑚 ∩ { dom 𝑥 } ) = ∅ ↔ ¬ dom 𝑥 ∈ suc 𝑚 ) | |
| 81 | 79 80 | sylibr | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( suc 𝑚 ∩ { dom 𝑥 } ) = ∅ ) |
| 82 | 69 81 | sylan2 | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( suc 𝑚 ∩ { dom 𝑥 } ) = ∅ ) |
| 83 | 82 | adantr | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( suc 𝑚 ∩ { dom 𝑥 } ) = ∅ ) |
| 84 | 58 68 83 | fun2d | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : ( suc 𝑚 ∪ { dom 𝑥 } ) ⟶ 𝐴 ) |
| 85 | sneq | ⊢ ( dom 𝑥 = suc 𝑚 → { dom 𝑥 } = { suc 𝑚 } ) | |
| 86 | 85 | uneq2d | ⊢ ( dom 𝑥 = suc 𝑚 → ( suc 𝑚 ∪ { dom 𝑥 } ) = ( suc 𝑚 ∪ { suc 𝑚 } ) ) |
| 87 | df-suc | ⊢ suc suc 𝑚 = ( suc 𝑚 ∪ { suc 𝑚 } ) | |
| 88 | 86 87 | eqtr4di | ⊢ ( dom 𝑥 = suc 𝑚 → ( suc 𝑚 ∪ { dom 𝑥 } ) = suc suc 𝑚 ) |
| 89 | 69 88 | syl | ⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( suc 𝑚 ∪ { dom 𝑥 } ) = suc suc 𝑚 ) |
| 90 | 89 | ad2antlr | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( suc 𝑚 ∪ { dom 𝑥 } ) = suc suc 𝑚 ) |
| 91 | 90 | feq2d | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : ( suc 𝑚 ∪ { dom 𝑥 } ) ⟶ 𝐴 ↔ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) |
| 92 | 84 91 | mpbid | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) ∧ 𝑧 ∈ 𝐴 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) |
| 93 | 92 | ex | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ 𝐴 → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) |
| 94 | 93 | adantrd | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) |
| 95 | 94 | a1d | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) ) |
| 96 | 95 | ancoms | ⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) ) |
| 97 | 96 | 3adant1 | ⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) ) |
| 98 | 97 | 3imp | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) |
| 99 | ffun | ⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → Fun 𝑥 ) | |
| 100 | 99 | adantl | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun 𝑥 ) |
| 101 | 59 60 | funsn | ⊢ Fun { 〈 dom 𝑥 , 𝑧 〉 } |
| 102 | 100 101 | jctir | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( Fun 𝑥 ∧ Fun { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 103 | 60 | dmsnop | ⊢ dom { 〈 dom 𝑥 , 𝑧 〉 } = { dom 𝑥 } |
| 104 | 103 | ineq2i | ⊢ ( dom 𝑥 ∩ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ( dom 𝑥 ∩ { dom 𝑥 } ) |
| 105 | disjsn | ⊢ ( ( dom 𝑥 ∩ { dom 𝑥 } ) = ∅ ↔ ¬ dom 𝑥 ∈ dom 𝑥 ) | |
| 106 | 76 105 | sylibr | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( dom 𝑥 ∩ { dom 𝑥 } ) = ∅ ) |
| 107 | 104 106 | eqtrid | ⊢ ( ( 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( dom 𝑥 ∩ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ∅ ) |
| 108 | 69 107 | sylan2 | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( dom 𝑥 ∩ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ∅ ) |
| 109 | funun | ⊢ ( ( ( Fun 𝑥 ∧ Fun { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ ( dom 𝑥 ∩ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ∅ ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) | |
| 110 | 102 108 109 | syl2anc | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 111 | ssun1 | ⊢ 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) | |
| 112 | 111 | a1i | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 113 | nnord | ⊢ ( 𝑚 ∈ ω → Ord 𝑚 ) | |
| 114 | 0elsuc | ⊢ ( Ord 𝑚 → ∅ ∈ suc 𝑚 ) | |
| 115 | 113 114 | syl | ⊢ ( 𝑚 ∈ ω → ∅ ∈ suc 𝑚 ) |
| 116 | 115 | adantr | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ∅ ∈ suc 𝑚 ) |
| 117 | 69 | eleq2d | ⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( ∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚 ) ) |
| 118 | 117 | adantl | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ∅ ∈ dom 𝑥 ↔ ∅ ∈ suc 𝑚 ) ) |
| 119 | 116 118 | mpbird | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ∅ ∈ dom 𝑥 ) |
| 120 | funssfv | ⊢ ( ( Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ ∅ ∈ dom 𝑥 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = ( 𝑥 ‘ ∅ ) ) | |
| 121 | 110 112 119 120 | syl3anc | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = ( 𝑥 ‘ ∅ ) ) |
| 122 | 121 | eqeq1d | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ↔ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) |
| 123 | 122 | ancoms | ⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ↔ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) |
| 124 | 123 | 3adant1 | ⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ↔ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) |
| 125 | 124 | biimpar | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ) |
| 126 | 125 | adantrl | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ) |
| 127 | 126 | 3adant2 | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ) |
| 128 | nfra1 | ⊢ Ⅎ 𝑘 ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) | |
| 129 | nfv | ⊢ Ⅎ 𝑘 𝑥 : suc 𝑚 ⟶ 𝐴 | |
| 130 | nfv | ⊢ Ⅎ 𝑘 𝑚 ∈ ω | |
| 131 | 128 129 130 | nf3an | ⊢ Ⅎ 𝑘 ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) |
| 132 | nfv | ⊢ Ⅎ 𝑘 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) | |
| 133 | nfv | ⊢ Ⅎ 𝑘 ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) | |
| 134 | 131 132 133 | nf3an | ⊢ Ⅎ 𝑘 ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) |
| 135 | simplr | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑘 ∈ suc 𝑚 ) | |
| 136 | elsuci | ⊢ ( 𝑘 ∈ suc 𝑚 → ( 𝑘 ∈ 𝑚 ∨ 𝑘 = 𝑚 ) ) | |
| 137 | rsp | ⊢ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) → ( 𝑘 ∈ 𝑚 → ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) | |
| 138 | 137 | impcom | ⊢ ( ( 𝑘 ∈ 𝑚 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) → ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) |
| 139 | 138 | ad2ant2lr | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ) → ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) |
| 140 | 139 | 3adant3 | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) |
| 141 | 110 | adantlr | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 142 | 111 | a1i | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 143 | ordsucelsuc | ⊢ ( Ord 𝑚 → ( 𝑘 ∈ 𝑚 ↔ suc 𝑘 ∈ suc 𝑚 ) ) | |
| 144 | 113 143 | syl | ⊢ ( 𝑚 ∈ ω → ( 𝑘 ∈ 𝑚 ↔ suc 𝑘 ∈ suc 𝑚 ) ) |
| 145 | 144 | biimpa | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) → suc 𝑘 ∈ suc 𝑚 ) |
| 146 | eleq2 | ⊢ ( dom 𝑥 = suc 𝑚 → ( suc 𝑘 ∈ dom 𝑥 ↔ suc 𝑘 ∈ suc 𝑚 ) ) | |
| 147 | 146 | biimparc | ⊢ ( ( suc 𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚 ) → suc 𝑘 ∈ dom 𝑥 ) |
| 148 | 145 69 147 | syl2an | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → suc 𝑘 ∈ dom 𝑥 ) |
| 149 | funssfv | ⊢ ( ( Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ suc 𝑘 ∈ dom 𝑥 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( 𝑥 ‘ suc 𝑘 ) ) | |
| 150 | 141 142 148 149 | syl3anc | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( 𝑥 ‘ suc 𝑘 ) ) |
| 151 | 150 | 3adant2 | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( 𝑥 ‘ suc 𝑘 ) ) |
| 152 | 110 | 3adant2 | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 153 | 111 | a1i | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 154 | eleq2 | ⊢ ( dom 𝑥 = suc 𝑚 → ( 𝑘 ∈ dom 𝑥 ↔ 𝑘 ∈ suc 𝑚 ) ) | |
| 155 | 154 | biimparc | ⊢ ( ( 𝑘 ∈ suc 𝑚 ∧ dom 𝑥 = suc 𝑚 ) → 𝑘 ∈ dom 𝑥 ) |
| 156 | 69 155 | sylan2 | ⊢ ( ( 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑘 ∈ dom 𝑥 ) |
| 157 | 156 | 3adant1 | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → 𝑘 ∈ dom 𝑥 ) |
| 158 | funssfv | ⊢ ( ( Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ 𝑥 ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ 𝑘 ∈ dom 𝑥 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) | |
| 159 | 152 153 157 158 | syl3anc | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 160 | 159 | 3adant1r | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 161 | 160 | fveq2d | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) |
| 162 | 151 161 | eleq12d | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) |
| 163 | 162 | 3adant2l | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) ) |
| 164 | 140 163 | mpbird | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) |
| 165 | 164 | a1d | ⊢ ( ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 166 | 165 | 3expib | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑘 ∈ 𝑚 ) → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 167 | 166 | expcom | ⊢ ( 𝑘 ∈ 𝑚 → ( 𝑚 ∈ ω → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 168 | 110 | 3adant1 | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 169 | ssun2 | ⊢ { 〈 dom 𝑥 , 𝑧 〉 } ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) | |
| 170 | 169 | a1i | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → { 〈 dom 𝑥 , 𝑧 〉 } ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) |
| 171 | suceq | ⊢ ( 𝑘 = 𝑚 → suc 𝑘 = suc 𝑚 ) | |
| 172 | 171 | eqeq2d | ⊢ ( 𝑘 = 𝑚 → ( dom 𝑥 = suc 𝑘 ↔ dom 𝑥 = suc 𝑚 ) ) |
| 173 | 172 | biimpar | ⊢ ( ( 𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚 ) → dom 𝑥 = suc 𝑘 ) |
| 174 | 59 | snid | ⊢ dom 𝑥 ∈ { dom 𝑥 } |
| 175 | 174 103 | eleqtrri | ⊢ dom 𝑥 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } |
| 176 | 173 175 | eqeltrrdi | ⊢ ( ( 𝑘 = 𝑚 ∧ dom 𝑥 = suc 𝑚 ) → suc 𝑘 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 177 | 69 176 | sylan2 | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → suc 𝑘 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 178 | 177 | 3adant2 | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → suc 𝑘 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } ) |
| 179 | funssfv | ⊢ ( ( Fun ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ { 〈 dom 𝑥 , 𝑧 〉 } ⊆ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∧ suc 𝑘 ∈ dom { 〈 dom 𝑥 , 𝑧 〉 } ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) ) | |
| 180 | 168 170 178 179 | syl3anc | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) ) |
| 181 | 173 | 3adant2 | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → dom 𝑥 = suc 𝑘 ) |
| 182 | fveq2 | ⊢ ( dom 𝑥 = suc 𝑘 → ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ dom 𝑥 ) = ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) ) | |
| 183 | 59 60 | fvsn | ⊢ ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ dom 𝑥 ) = 𝑧 |
| 184 | 182 183 | eqtr3di | ⊢ ( dom 𝑥 = suc 𝑘 → ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) = 𝑧 ) |
| 185 | 181 184 | syl | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ dom 𝑥 = suc 𝑚 ) → ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) = 𝑧 ) |
| 186 | 69 185 | syl3an3 | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( { 〈 dom 𝑥 , 𝑧 〉 } ‘ suc 𝑘 ) = 𝑧 ) |
| 187 | 180 186 | eqtrd | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = 𝑧 ) |
| 188 | 187 | 3expa | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = 𝑧 ) |
| 189 | 188 | 3adant2 | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) = 𝑧 ) |
| 190 | 159 | 3adant1l | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑘 ) ) |
| 191 | fveq2 | ⊢ ( 𝑘 = 𝑚 → ( 𝑥 ‘ 𝑘 ) = ( 𝑥 ‘ 𝑚 ) ) | |
| 192 | 191 | adantr | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) → ( 𝑥 ‘ 𝑘 ) = ( 𝑥 ‘ 𝑚 ) ) |
| 193 | 192 | 3ad2ant1 | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑥 ‘ 𝑘 ) = ( 𝑥 ‘ 𝑚 ) ) |
| 194 | 190 193 | eqtrd | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) = ( 𝑥 ‘ 𝑚 ) ) |
| 195 | 194 | fveq2d | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) = ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) |
| 196 | 189 195 | eleq12d | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ 𝑘 ∈ suc 𝑚 ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) ) |
| 197 | 196 | 3adant2l | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) ) |
| 198 | 197 | biimprd | ⊢ ( ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 199 | 198 | 3expib | ⊢ ( ( 𝑘 = 𝑚 ∧ 𝑚 ∈ ω ) → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 200 | 199 | ex | ⊢ ( 𝑘 = 𝑚 → ( 𝑚 ∈ ω → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 201 | 167 200 | jaoi | ⊢ ( ( 𝑘 ∈ 𝑚 ∨ 𝑘 = 𝑚 ) → ( 𝑚 ∈ ω → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 202 | 136 201 | syl | ⊢ ( 𝑘 ∈ suc 𝑚 → ( 𝑚 ∈ ω → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 203 | 202 | com3r | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑘 ∈ suc 𝑚 → ( 𝑚 ∈ ω → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 204 | 135 203 | mpd | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑚 ∈ ω → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 205 | 204 | ex | ⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑘 ∈ suc 𝑚 ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑚 ∈ ω → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) |
| 206 | 205 | expcom | ⊢ ( 𝑘 ∈ suc 𝑚 → ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑚 ∈ ω → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) ) ) |
| 207 | 206 | 3impd | ⊢ ( 𝑘 ∈ suc 𝑚 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 208 | 207 | impd | ⊢ ( 𝑘 ∈ suc 𝑚 → ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 209 | 208 | com12 | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ) → ( 𝑘 ∈ suc 𝑚 → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 210 | 209 | 3adant3 | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( 𝑘 ∈ suc 𝑚 → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 211 | 134 210 | ralrimi | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ∀ 𝑘 ∈ suc 𝑚 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) |
| 212 | suceq | ⊢ ( 𝑝 = suc 𝑚 → suc 𝑝 = suc suc 𝑚 ) | |
| 213 | 212 | feq2d | ⊢ ( 𝑝 = suc 𝑚 → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ↔ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ) ) |
| 214 | raleq | ⊢ ( 𝑝 = suc 𝑚 → ( ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ↔ ∀ 𝑘 ∈ suc 𝑚 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) | |
| 215 | 213 214 | 3anbi13d | ⊢ ( 𝑝 = suc 𝑚 → ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ↔ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ suc 𝑚 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) ) |
| 216 | 215 | rspcev | ⊢ ( ( suc 𝑚 ∈ ω ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc suc 𝑚 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ suc 𝑚 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) → ∃ 𝑝 ∈ ω ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 217 | 57 98 127 211 216 | syl13anc | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ∃ 𝑝 ∈ ω ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 218 | snex | ⊢ { 〈 dom 𝑥 , 𝑧 〉 } ∈ V | |
| 219 | 33 218 | unex | ⊢ ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ V |
| 220 | 1 2 219 | axdc3lem3 | ⊢ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ↔ ∃ 𝑝 ∈ ω ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) : suc 𝑝 ⟶ 𝐴 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑝 ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ‘ 𝑘 ) ) ) ) |
| 221 | 217 220 | sylibr | ⊢ ( ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ∧ 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) |
| 222 | 221 | 3coml | ⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) |
| 223 | 222 | 3exp | ⊢ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑧 ∈ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ) → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) |
| 224 | 223 | expd | ⊢ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( 𝑧 ∈ 𝐴 → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) ) |
| 225 | 54 224 | sylcom | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) ) |
| 226 | 225 | 3impd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) |
| 227 | 226 | ex | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) |
| 228 | 227 | com23 | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) ) |
| 229 | 50 228 | mpdi | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) ) |
| 230 | 229 | imp | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) ) → ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ) |
| 231 | resundir | ⊢ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = ( ( 𝑥 ↾ dom 𝑥 ) ∪ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) ) | |
| 232 | frel | ⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → Rel 𝑥 ) | |
| 233 | resdm | ⊢ ( Rel 𝑥 → ( 𝑥 ↾ dom 𝑥 ) = 𝑥 ) | |
| 234 | 232 233 | syl | ⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑥 ↾ dom 𝑥 ) = 𝑥 ) |
| 235 | 234 | adantl | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( 𝑥 ↾ dom 𝑥 ) = 𝑥 ) |
| 236 | 69 73 | sylan2 | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → dom 𝑥 ∈ ω ) |
| 237 | 74 75 | syl | ⊢ ( dom 𝑥 ∈ ω → ¬ dom 𝑥 ∈ dom 𝑥 ) |
| 238 | incom | ⊢ ( { dom 𝑥 } ∩ dom 𝑥 ) = ( dom 𝑥 ∩ { dom 𝑥 } ) | |
| 239 | 238 | eqeq1i | ⊢ ( ( { dom 𝑥 } ∩ dom 𝑥 ) = ∅ ↔ ( dom 𝑥 ∩ { dom 𝑥 } ) = ∅ ) |
| 240 | 59 60 | fnsn | ⊢ { 〈 dom 𝑥 , 𝑧 〉 } Fn { dom 𝑥 } |
| 241 | fnresdisj | ⊢ ( { 〈 dom 𝑥 , 𝑧 〉 } Fn { dom 𝑥 } → ( ( { dom 𝑥 } ∩ dom 𝑥 ) = ∅ ↔ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) ) | |
| 242 | 240 241 | ax-mp | ⊢ ( ( { dom 𝑥 } ∩ dom 𝑥 ) = ∅ ↔ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) |
| 243 | 239 242 105 | 3bitr3ri | ⊢ ( ¬ dom 𝑥 ∈ dom 𝑥 ↔ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) |
| 244 | 237 243 | sylib | ⊢ ( dom 𝑥 ∈ ω → ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) |
| 245 | 236 244 | syl | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) = ∅ ) |
| 246 | 235 245 | uneq12d | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ↾ dom 𝑥 ) ∪ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) ) = ( 𝑥 ∪ ∅ ) ) |
| 247 | un0 | ⊢ ( 𝑥 ∪ ∅ ) = 𝑥 | |
| 248 | 246 247 | eqtrdi | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ↾ dom 𝑥 ) ∪ ( { 〈 dom 𝑥 , 𝑧 〉 } ↾ dom 𝑥 ) ) = 𝑥 ) |
| 249 | 231 248 | eqtrid | ⊢ ( ( 𝑚 ∈ ω ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 250 | 249 | ancoms | ⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 251 | 250 | 3adant1 | ⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 252 | 251 | 3ad2ant3 | ⊢ ( ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 253 | 252 | adantl | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) ) → ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) |
| 254 | 103 | uneq2i | ⊢ ( dom 𝑥 ∪ dom { 〈 dom 𝑥 , 𝑧 〉 } ) = ( dom 𝑥 ∪ { dom 𝑥 } ) |
| 255 | dmun | ⊢ dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = ( dom 𝑥 ∪ dom { 〈 dom 𝑥 , 𝑧 〉 } ) | |
| 256 | df-suc | ⊢ suc dom 𝑥 = ( dom 𝑥 ∪ { dom 𝑥 } ) | |
| 257 | 254 255 256 | 3eqtr4i | ⊢ dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 |
| 258 | 253 257 | jctil | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) ) → ( dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) ) |
| 259 | dmeq | ⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → dom 𝑦 = dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ) | |
| 260 | 259 | eqeq1d | ⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → ( dom 𝑦 = suc dom 𝑥 ↔ dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 ) ) |
| 261 | reseq1 | ⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → ( 𝑦 ↾ dom 𝑥 ) = ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) ) | |
| 262 | 261 | eqeq1d | ⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → ( ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ↔ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) ) |
| 263 | 260 262 | anbi12d | ⊢ ( 𝑦 = ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) → ( ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ↔ ( dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) ) ) |
| 264 | 263 | rspcev | ⊢ ( ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ∈ 𝑆 ∧ ( dom ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) = suc dom 𝑥 ∧ ( ( 𝑥 ∪ { 〈 dom 𝑥 , 𝑧 〉 } ) ↾ dom 𝑥 ) = 𝑥 ) ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) |
| 265 | 230 258 264 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) ) ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) |
| 266 | 265 | 3exp2 | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) |
| 267 | 266 | exlimdv | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) |
| 268 | 267 | adantr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ∃ 𝑧 𝑧 ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑚 ) ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) |
| 269 | 49 268 | mpd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 270 | 269 | com3r | ⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 271 | 35 270 | mpan2d | ⊢ ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 272 | 271 | com3r | ⊢ ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ∧ 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ 𝑚 ∈ ω ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 273 | 272 | 3expd | ⊢ ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) → ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( 𝑚 ∈ ω → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) ) |
| 274 | 273 | com3r | ⊢ ( 𝑥 : suc 𝑚 ⟶ 𝐴 → ( ( 𝑥 ‘ ∅ ) = 𝐶 → ( ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) → ( 𝑚 ∈ ω → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) ) ) |
| 275 | 274 | 3imp | ⊢ ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) → ( 𝑚 ∈ ω → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 276 | 275 | com12 | ⊢ ( 𝑚 ∈ ω → ( ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) ) |
| 277 | 276 | rexlimiv | ⊢ ( ∃ 𝑚 ∈ ω ( 𝑥 : suc 𝑚 ⟶ 𝐴 ∧ ( 𝑥 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ 𝑚 ( 𝑥 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑥 ‘ 𝑘 ) ) ) → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) |
| 278 | 34 277 | sylbi | ⊢ ( 𝑥 ∈ 𝑆 → ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) ) |
| 279 | 278 | impcom | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) |
| 280 | rabn0 | ⊢ ( { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ≠ ∅ ↔ ∃ 𝑦 ∈ 𝑆 ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) ) | |
| 281 | 279 280 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ≠ ∅ ) |
| 282 | 29 | rabex | ⊢ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ V |
| 283 | 282 | elsn | ⊢ ( { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ { ∅ } ↔ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } = ∅ ) |
| 284 | 283 | necon3bbii | ⊢ ( ¬ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ { ∅ } ↔ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ≠ ∅ ) |
| 285 | 281 284 | sylibr | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → ¬ { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ { ∅ } ) |
| 286 | 32 285 | eldifd | ⊢ ( ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ∧ 𝑥 ∈ 𝑆 ) → { 𝑦 ∈ 𝑆 ∣ ( dom 𝑦 = suc dom 𝑥 ∧ ( 𝑦 ↾ dom 𝑥 ) = 𝑥 ) } ∈ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 287 | 286 3 | fmptd | ⊢ ( 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) → 𝐺 : 𝑆 ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ) |
| 288 | 29 | axdc2 | ⊢ ( ( 𝑆 ≠ ∅ ∧ 𝐺 : 𝑆 ⟶ ( 𝒫 𝑆 ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
| 289 | 28 287 288 | syl2an | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ ℎ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) ) |
| 290 | 1 2 3 | axdc3lem2 | ⊢ ( ∃ ℎ ( ℎ : ω ⟶ 𝑆 ∧ ∀ 𝑘 ∈ ω ( ℎ ‘ suc 𝑘 ) ∈ ( 𝐺 ‘ ( ℎ ‘ 𝑘 ) ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| 291 | 289 290 | syl | ⊢ ( ( 𝐶 ∈ 𝐴 ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ( 𝑔 ‘ ∅ ) = 𝐶 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |