This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If x is not free in ph , ps , and ch , then it is not free in ( ph /\ ps /\ ch ) . (Contributed by Mario Carneiro, 11-Aug-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | nfan.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| nfan.2 | ⊢ Ⅎ 𝑥 𝜓 | ||
| nfan.3 | ⊢ Ⅎ 𝑥 𝜒 | ||
| Assertion | nf3an | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | nfan.1 | ⊢ Ⅎ 𝑥 𝜑 | |
| 2 | nfan.2 | ⊢ Ⅎ 𝑥 𝜓 | |
| 3 | nfan.3 | ⊢ Ⅎ 𝑥 𝜒 | |
| 4 | df-3an | ⊢ ( ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) ↔ ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) ) | |
| 5 | 1 2 | nfan | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜓 ) |
| 6 | 5 3 | nfan | ⊢ Ⅎ 𝑥 ( ( 𝜑 ∧ 𝜓 ) ∧ 𝜒 ) |
| 7 | 4 6 | nfxfr | ⊢ Ⅎ 𝑥 ( 𝜑 ∧ 𝜓 ∧ 𝜒 ) |