This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: An apparent strengthening of ax-dc (but derived from it) which shows that there is a denumerable sequence g for any function that maps elements of a set A to nonempty subsets of A such that g ( x + 1 ) e. F ( g ( x ) ) for all x e. _om . The finitistic version of this can be proven by induction, but the infinite version requires this new axiom. (Contributed by Mario Carneiro, 25-Jan-2013)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | axdc2.1 | ⊢ 𝐴 ∈ V | |
| Assertion | axdc2 | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | axdc2.1 | ⊢ 𝐴 ∈ V | |
| 2 | eleq1w | ⊢ ( 𝑠 = 𝑥 → ( 𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) | |
| 3 | 2 | adantr | ⊢ ( ( 𝑠 = 𝑥 ∧ 𝑡 = 𝑦 ) → ( 𝑠 ∈ 𝐴 ↔ 𝑥 ∈ 𝐴 ) ) |
| 4 | fveq2 | ⊢ ( 𝑠 = 𝑥 → ( 𝐹 ‘ 𝑠 ) = ( 𝐹 ‘ 𝑥 ) ) | |
| 5 | 4 | eleq2d | ⊢ ( 𝑠 = 𝑥 → ( 𝑡 ∈ ( 𝐹 ‘ 𝑠 ) ↔ 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 6 | eleq1w | ⊢ ( 𝑡 = 𝑦 → ( 𝑡 ∈ ( 𝐹 ‘ 𝑥 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ) | |
| 7 | 5 6 | sylan9bb | ⊢ ( ( 𝑠 = 𝑥 ∧ 𝑡 = 𝑦 ) → ( 𝑡 ∈ ( 𝐹 ‘ 𝑠 ) ↔ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ) |
| 8 | 3 7 | anbi12d | ⊢ ( ( 𝑠 = 𝑥 ∧ 𝑡 = 𝑦 ) → ( ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑠 ) ) ↔ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) ) ) |
| 9 | 8 | cbvopabv | ⊢ { 〈 𝑠 , 𝑡 〉 ∣ ( 𝑠 ∈ 𝐴 ∧ 𝑡 ∈ ( 𝐹 ‘ 𝑠 ) ) } = { 〈 𝑥 , 𝑦 〉 ∣ ( 𝑥 ∈ 𝐴 ∧ 𝑦 ∈ ( 𝐹 ‘ 𝑥 ) ) } |
| 10 | fveq2 | ⊢ ( 𝑛 = 𝑥 → ( ℎ ‘ 𝑛 ) = ( ℎ ‘ 𝑥 ) ) | |
| 11 | 10 | cbvmptv | ⊢ ( 𝑛 ∈ ω ↦ ( ℎ ‘ 𝑛 ) ) = ( 𝑥 ∈ ω ↦ ( ℎ ‘ 𝑥 ) ) |
| 12 | 1 9 11 | axdc2lem | ⊢ ( ( 𝐴 ≠ ∅ ∧ 𝐹 : 𝐴 ⟶ ( 𝒫 𝐴 ∖ { ∅ } ) ) → ∃ 𝑔 ( 𝑔 : ω ⟶ 𝐴 ∧ ∀ 𝑘 ∈ ω ( 𝑔 ‘ suc 𝑘 ) ∈ ( 𝐹 ‘ ( 𝑔 ‘ 𝑘 ) ) ) ) |