This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate the Ackermann bijection ackbij1 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbijnn.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) | |
| Assertion | ackbijnn | ⊢ 𝐹 : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbijnn.1 | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) | |
| 2 | hashgval2 | ⊢ ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 3 | 2 | hashgf1o | ⊢ ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 |
| 4 | sneq | ⊢ ( 𝑤 = 𝑦 → { 𝑤 } = { 𝑦 } ) | |
| 5 | pweq | ⊢ ( 𝑤 = 𝑦 → 𝒫 𝑤 = 𝒫 𝑦 ) | |
| 6 | 4 5 | xpeq12d | ⊢ ( 𝑤 = 𝑦 → ( { 𝑤 } × 𝒫 𝑤 ) = ( { 𝑦 } × 𝒫 𝑦 ) ) |
| 7 | 6 | cbviunv | ⊢ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) = ∪ 𝑦 ∈ 𝑧 ( { 𝑦 } × 𝒫 𝑦 ) |
| 8 | iuneq1 | ⊢ ( 𝑧 = 𝑥 → ∪ 𝑦 ∈ 𝑧 ( { 𝑦 } × 𝒫 𝑦 ) = ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) | |
| 9 | 7 8 | eqtrid | ⊢ ( 𝑧 = 𝑥 → ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) = ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) |
| 10 | 9 | fveq2d | ⊢ ( 𝑧 = 𝑥 → ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) = ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 11 | 10 | cbvmptv | ⊢ ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) |
| 12 | 11 | ackbij1 | ⊢ ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω |
| 13 | f1ocnv | ⊢ ( ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 → ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω ) | |
| 14 | 3 13 | ax-mp | ⊢ ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω |
| 15 | f1opwfi | ⊢ ( ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω → ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ( 𝒫 ω ∩ Fin ) ) | |
| 16 | 14 15 | ax-mp | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ( 𝒫 ω ∩ Fin ) |
| 17 | f1oco | ⊢ ( ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω ∧ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ω ) | |
| 18 | 12 16 17 | mp2an | ⊢ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ω |
| 19 | f1oco | ⊢ ( ( ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 ∧ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ω ) → ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ) | |
| 20 | 3 18 19 | mp2an | ⊢ ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 |
| 21 | inss2 | ⊢ ( 𝒫 ω ∩ Fin ) ⊆ Fin | |
| 22 | f1of | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ( 𝒫 ω ∩ Fin ) → ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) ⟶ ( 𝒫 ω ∩ Fin ) ) | |
| 23 | 16 22 | ax-mp | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) ⟶ ( 𝒫 ω ∩ Fin ) |
| 24 | eqid | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) | |
| 25 | 24 | fmpt | ⊢ ( ∀ 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ ( 𝒫 ω ∩ Fin ) ↔ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) : ( 𝒫 ℕ0 ∩ Fin ) ⟶ ( 𝒫 ω ∩ Fin ) ) |
| 26 | 23 25 | mpbir | ⊢ ∀ 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ ( 𝒫 ω ∩ Fin ) |
| 27 | 26 | rspec | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 28 | 21 27 | sselid | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ Fin ) |
| 29 | snfi | ⊢ { 𝑤 } ∈ Fin | |
| 30 | cnvimass | ⊢ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ⊆ dom ( ♯ ↾ ω ) | |
| 31 | dmhashres | ⊢ dom ( ♯ ↾ ω ) = ω | |
| 32 | 30 31 | sseqtri | ⊢ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ⊆ ω |
| 33 | onfin2 | ⊢ ω = ( On ∩ Fin ) | |
| 34 | inss2 | ⊢ ( On ∩ Fin ) ⊆ Fin | |
| 35 | 33 34 | eqsstri | ⊢ ω ⊆ Fin |
| 36 | 32 35 | sstri | ⊢ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ⊆ Fin |
| 37 | simpr | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) | |
| 38 | 36 37 | sselid | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → 𝑤 ∈ Fin ) |
| 39 | pwfi | ⊢ ( 𝑤 ∈ Fin ↔ 𝒫 𝑤 ∈ Fin ) | |
| 40 | 38 39 | sylib | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → 𝒫 𝑤 ∈ Fin ) |
| 41 | xpfi | ⊢ ( ( { 𝑤 } ∈ Fin ∧ 𝒫 𝑤 ∈ Fin ) → ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) | |
| 42 | 29 40 41 | sylancr | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) |
| 43 | 42 | ralrimiva | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ∀ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) |
| 44 | iunfi | ⊢ ( ( ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ Fin ∧ ∀ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) → ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) | |
| 45 | 28 43 44 | syl2anc | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin ) |
| 46 | ficardom | ⊢ ( ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin → ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ω ) | |
| 47 | 45 46 | syl | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ω ) |
| 48 | 47 | fvresd | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( ♯ ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) |
| 49 | hashcard | ⊢ ( ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin → ( ♯ ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( ♯ ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) | |
| 50 | 45 49 | syl | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ♯ ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( ♯ ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) |
| 51 | xp1st | ⊢ ( 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) → ( 1st ‘ 𝑧 ) ∈ { 𝑤 } ) | |
| 52 | elsni | ⊢ ( ( 1st ‘ 𝑧 ) ∈ { 𝑤 } → ( 1st ‘ 𝑧 ) = 𝑤 ) | |
| 53 | 51 52 | syl | ⊢ ( 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) → ( 1st ‘ 𝑧 ) = 𝑤 ) |
| 54 | 53 | rgen | ⊢ ∀ 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) ( 1st ‘ 𝑧 ) = 𝑤 |
| 55 | 54 | rgenw | ⊢ ∀ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∀ 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) ( 1st ‘ 𝑧 ) = 𝑤 |
| 56 | invdisj | ⊢ ( ∀ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∀ 𝑧 ∈ ( { 𝑤 } × 𝒫 𝑤 ) ( 1st ‘ 𝑧 ) = 𝑤 → Disj 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) | |
| 57 | 55 56 | mp1i | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → Disj 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) |
| 58 | 28 42 57 | hashiun | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ♯ ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) = Σ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ) |
| 59 | sneq | ⊢ ( 𝑤 = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) → { 𝑤 } = { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) | |
| 60 | pweq | ⊢ ( 𝑤 = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) → 𝒫 𝑤 = 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) | |
| 61 | 59 60 | xpeq12d | ⊢ ( 𝑤 = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) → ( { 𝑤 } × 𝒫 𝑤 ) = ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) |
| 62 | 61 | fveq2d | ⊢ ( 𝑤 = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) → ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) = ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
| 63 | elinel2 | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝑥 ∈ Fin ) | |
| 64 | f1of1 | ⊢ ( ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω → ◡ ( ♯ ↾ ω ) : ℕ0 –1-1→ ω ) | |
| 65 | 14 64 | ax-mp | ⊢ ◡ ( ♯ ↾ ω ) : ℕ0 –1-1→ ω |
| 66 | elinel1 | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝑥 ∈ 𝒫 ℕ0 ) | |
| 67 | 66 | elpwid | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → 𝑥 ⊆ ℕ0 ) |
| 68 | f1ores | ⊢ ( ( ◡ ( ♯ ↾ ω ) : ℕ0 –1-1→ ω ∧ 𝑥 ⊆ ℕ0 ) → ( ◡ ( ♯ ↾ ω ) ↾ 𝑥 ) : 𝑥 –1-1-onto→ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) | |
| 69 | 65 67 68 | sylancr | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ◡ ( ♯ ↾ ω ) ↾ 𝑥 ) : 𝑥 –1-1-onto→ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) |
| 70 | fvres | ⊢ ( 𝑦 ∈ 𝑥 → ( ( ◡ ( ♯ ↾ ω ) ↾ 𝑥 ) ‘ 𝑦 ) = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) | |
| 71 | 70 | adantl | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ◡ ( ♯ ↾ ω ) ↾ 𝑥 ) ‘ 𝑦 ) = ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) |
| 72 | hashcl | ⊢ ( ( { 𝑤 } × 𝒫 𝑤 ) ∈ Fin → ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ℕ0 ) | |
| 73 | nn0cn | ⊢ ( ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ℕ0 → ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ℂ ) | |
| 74 | 42 72 73 | 3syl | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) → ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ℂ ) |
| 75 | 62 63 69 71 74 | fsumf1o | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → Σ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( ♯ ‘ ( { 𝑤 } × 𝒫 𝑤 ) ) = Σ 𝑦 ∈ 𝑥 ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
| 76 | snfi | ⊢ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ∈ Fin | |
| 77 | 67 | sselda | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝑦 ∈ ℕ0 ) |
| 78 | f1of | ⊢ ( ◡ ( ♯ ↾ ω ) : ℕ0 –1-1-onto→ ω → ◡ ( ♯ ↾ ω ) : ℕ0 ⟶ ω ) | |
| 79 | 14 78 | ax-mp | ⊢ ◡ ( ♯ ↾ ω ) : ℕ0 ⟶ ω |
| 80 | 79 | ffvelcdmi | ⊢ ( 𝑦 ∈ ℕ0 → ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ ω ) |
| 81 | 77 80 | syl | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ ω ) |
| 82 | 35 81 | sselid | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ) |
| 83 | pwfi | ⊢ ( ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ↔ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ) | |
| 84 | 82 83 | sylib | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ) |
| 85 | hashxp | ⊢ ( ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ∈ Fin ∧ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin ) → ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) · ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) | |
| 86 | 76 84 85 | sylancr | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) · ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
| 87 | hashsng | ⊢ ( ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ ω → ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) = 1 ) | |
| 88 | 81 87 | syl | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) = 1 ) |
| 89 | hashpw | ⊢ ( ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ∈ Fin → ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = ( 2 ↑ ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) | |
| 90 | 82 89 | syl | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = ( 2 ↑ ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) ) |
| 91 | 81 | fvresd | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ♯ ↾ ω ) ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) |
| 92 | f1ocnvfv2 | ⊢ ( ( ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 ∧ 𝑦 ∈ ℕ0 ) → ( ( ♯ ↾ ω ) ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = 𝑦 ) | |
| 93 | 3 77 92 | sylancr | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ♯ ↾ ω ) ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = 𝑦 ) |
| 94 | 91 93 | eqtr3d | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = 𝑦 ) |
| 95 | 94 | oveq2d | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( 2 ↑ ( ♯ ‘ ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( 2 ↑ 𝑦 ) ) |
| 96 | 90 95 | eqtrd | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) = ( 2 ↑ 𝑦 ) ) |
| 97 | 88 96 | oveq12d | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ( ♯ ‘ { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } ) · ( ♯ ‘ 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( 1 · ( 2 ↑ 𝑦 ) ) ) |
| 98 | 2cn | ⊢ 2 ∈ ℂ | |
| 99 | expcl | ⊢ ( ( 2 ∈ ℂ ∧ 𝑦 ∈ ℕ0 ) → ( 2 ↑ 𝑦 ) ∈ ℂ ) | |
| 100 | 98 77 99 | sylancr | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( 2 ↑ 𝑦 ) ∈ ℂ ) |
| 101 | 100 | mullidd | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( 1 · ( 2 ↑ 𝑦 ) ) = ( 2 ↑ 𝑦 ) ) |
| 102 | 86 97 101 | 3eqtrd | ⊢ ( ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ∧ 𝑦 ∈ 𝑥 ) → ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = ( 2 ↑ 𝑦 ) ) |
| 103 | 102 | sumeq2dv | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → Σ 𝑦 ∈ 𝑥 ( ♯ ‘ ( { ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) } × 𝒫 ( ◡ ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) = Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
| 104 | 58 75 103 | 3eqtrd | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ♯ ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) = Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
| 105 | 48 50 104 | 3eqtrd | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) → ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) = Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
| 106 | 105 | mpteq2ia | ⊢ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ Σ 𝑦 ∈ 𝑥 ( 2 ↑ 𝑦 ) ) |
| 107 | 47 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ) → ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ∈ ω ) |
| 108 | 27 | adantl | ⊢ ( ( ⊤ ∧ 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ) → ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ∈ ( 𝒫 ω ∩ Fin ) ) |
| 109 | eqidd | ⊢ ( ⊤ → ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) | |
| 110 | eqidd | ⊢ ( ⊤ → ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) = ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) | |
| 111 | iuneq1 | ⊢ ( 𝑧 = ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) → ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) = ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) | |
| 112 | 111 | fveq2d | ⊢ ( 𝑧 = ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) → ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) = ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) |
| 113 | 108 109 110 112 | fmptco | ⊢ ( ⊤ → ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) |
| 114 | f1of | ⊢ ( ( ♯ ↾ ω ) : ω –1-1-onto→ ℕ0 → ( ♯ ↾ ω ) : ω ⟶ ℕ0 ) | |
| 115 | 3 114 | mp1i | ⊢ ( ⊤ → ( ♯ ↾ ω ) : ω ⟶ ℕ0 ) |
| 116 | 115 | feqmptd | ⊢ ( ⊤ → ( ♯ ↾ ω ) = ( 𝑦 ∈ ω ↦ ( ( ♯ ↾ ω ) ‘ 𝑦 ) ) ) |
| 117 | fveq2 | ⊢ ( 𝑦 = ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) → ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) | |
| 118 | 107 113 116 117 | fmptco | ⊢ ( ⊤ → ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) ) |
| 119 | 118 | mptru | ⊢ ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) = ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ( ♯ ↾ ω ) ‘ ( card ‘ ∪ 𝑤 ∈ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ( { 𝑤 } × 𝒫 𝑤 ) ) ) ) |
| 120 | 106 119 1 | 3eqtr4i | ⊢ ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) = 𝐹 |
| 121 | f1oeq1 | ⊢ ( ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) = 𝐹 → ( ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ↔ 𝐹 : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ) ) | |
| 122 | 120 121 | ax-mp | ⊢ ( ( ( ♯ ↾ ω ) ∘ ( ( 𝑧 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑤 ∈ 𝑧 ( { 𝑤 } × 𝒫 𝑤 ) ) ) ∘ ( 𝑥 ∈ ( 𝒫 ℕ0 ∩ Fin ) ↦ ( ◡ ( ♯ ↾ ω ) “ 𝑥 ) ) ) ) : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ↔ 𝐹 : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 ) |
| 123 | 20 122 | mpbi | ⊢ 𝐹 : ( 𝒫 ℕ0 ∩ Fin ) –1-1-onto→ ℕ0 |