This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the Cartesian product of two finite sets is the product of their sizes. (Contributed by Paul Chapman, 30-Nov-2012)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashxp | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | xpeq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) → ( 𝐴 × 𝐵 ) = ( 𝐴 × if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ♯ ‘ ( 𝐴 × if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) ) |
| 3 | fveq2 | ⊢ ( 𝐵 = if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) → ( ♯ ‘ 𝐵 ) = ( ♯ ‘ if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) → ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) → ( ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ↔ ( ♯ ‘ ( 𝐴 × if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) ) ) |
| 6 | 5 | imbi2d | ⊢ ( 𝐵 = if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) → ( ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) ↔ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 × if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) ) ) ) |
| 7 | 0fi | ⊢ ∅ ∈ Fin | |
| 8 | 7 | elimel | ⊢ if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ∈ Fin |
| 9 | 8 | hashxplem | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 × if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ if ( 𝐵 ∈ Fin , 𝐵 , ∅ ) ) ) ) |
| 10 | 6 9 | dedth | ⊢ ( 𝐵 ∈ Fin → ( 𝐴 ∈ Fin → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) ) |
| 11 | 10 | impcom | ⊢ ( ( 𝐴 ∈ Fin ∧ 𝐵 ∈ Fin ) → ( ♯ ‘ ( 𝐴 × 𝐵 ) ) = ( ( ♯ ‘ 𝐴 ) · ( ♯ ‘ 𝐵 ) ) ) |