This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size of the power set of a finite set is 2 raised to the power of the size of the set. (Contributed by Paul Chapman, 30-Nov-2012) (Proof shortened by Mario Carneiro, 5-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashpw | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝒫 𝐴 ) = ( 2 ↑ ( ♯ ‘ 𝐴 ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | pweq | ⊢ ( 𝑥 = 𝐴 → 𝒫 𝑥 = 𝒫 𝐴 ) | |
| 2 | 1 | fveq2d | ⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝒫 𝑥 ) = ( ♯ ‘ 𝒫 𝐴 ) ) |
| 3 | fveq2 | ⊢ ( 𝑥 = 𝐴 → ( ♯ ‘ 𝑥 ) = ( ♯ ‘ 𝐴 ) ) | |
| 4 | 3 | oveq2d | ⊢ ( 𝑥 = 𝐴 → ( 2 ↑ ( ♯ ‘ 𝑥 ) ) = ( 2 ↑ ( ♯ ‘ 𝐴 ) ) ) |
| 5 | 2 4 | eqeq12d | ⊢ ( 𝑥 = 𝐴 → ( ( ♯ ‘ 𝒫 𝑥 ) = ( 2 ↑ ( ♯ ‘ 𝑥 ) ) ↔ ( ♯ ‘ 𝒫 𝐴 ) = ( 2 ↑ ( ♯ ‘ 𝐴 ) ) ) ) |
| 6 | vex | ⊢ 𝑥 ∈ V | |
| 7 | 6 | pw2en | ⊢ 𝒫 𝑥 ≈ ( 2o ↑m 𝑥 ) |
| 8 | pwfi | ⊢ ( 𝑥 ∈ Fin ↔ 𝒫 𝑥 ∈ Fin ) | |
| 9 | 8 | biimpi | ⊢ ( 𝑥 ∈ Fin → 𝒫 𝑥 ∈ Fin ) |
| 10 | df2o2 | ⊢ 2o = { ∅ , { ∅ } } | |
| 11 | prfi | ⊢ { ∅ , { ∅ } } ∈ Fin | |
| 12 | 10 11 | eqeltri | ⊢ 2o ∈ Fin |
| 13 | mapfi | ⊢ ( ( 2o ∈ Fin ∧ 𝑥 ∈ Fin ) → ( 2o ↑m 𝑥 ) ∈ Fin ) | |
| 14 | 12 13 | mpan | ⊢ ( 𝑥 ∈ Fin → ( 2o ↑m 𝑥 ) ∈ Fin ) |
| 15 | hashen | ⊢ ( ( 𝒫 𝑥 ∈ Fin ∧ ( 2o ↑m 𝑥 ) ∈ Fin ) → ( ( ♯ ‘ 𝒫 𝑥 ) = ( ♯ ‘ ( 2o ↑m 𝑥 ) ) ↔ 𝒫 𝑥 ≈ ( 2o ↑m 𝑥 ) ) ) | |
| 16 | 9 14 15 | syl2anc | ⊢ ( 𝑥 ∈ Fin → ( ( ♯ ‘ 𝒫 𝑥 ) = ( ♯ ‘ ( 2o ↑m 𝑥 ) ) ↔ 𝒫 𝑥 ≈ ( 2o ↑m 𝑥 ) ) ) |
| 17 | 7 16 | mpbiri | ⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝒫 𝑥 ) = ( ♯ ‘ ( 2o ↑m 𝑥 ) ) ) |
| 18 | hashmap | ⊢ ( ( 2o ∈ Fin ∧ 𝑥 ∈ Fin ) → ( ♯ ‘ ( 2o ↑m 𝑥 ) ) = ( ( ♯ ‘ 2o ) ↑ ( ♯ ‘ 𝑥 ) ) ) | |
| 19 | 12 18 | mpan | ⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ ( 2o ↑m 𝑥 ) ) = ( ( ♯ ‘ 2o ) ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 20 | hash2 | ⊢ ( ♯ ‘ 2o ) = 2 | |
| 21 | 20 | oveq1i | ⊢ ( ( ♯ ‘ 2o ) ↑ ( ♯ ‘ 𝑥 ) ) = ( 2 ↑ ( ♯ ‘ 𝑥 ) ) |
| 22 | 19 21 | eqtrdi | ⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ ( 2o ↑m 𝑥 ) ) = ( 2 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 23 | 17 22 | eqtrd | ⊢ ( 𝑥 ∈ Fin → ( ♯ ‘ 𝒫 𝑥 ) = ( 2 ↑ ( ♯ ‘ 𝑥 ) ) ) |
| 24 | 5 23 | vtoclga | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ 𝒫 𝐴 ) = ( 2 ↑ ( ♯ ‘ 𝐴 ) ) ) |