This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A short expression for the G function of hashgf1o . (Contributed by Mario Carneiro, 24-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashgval2 | ⊢ ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | hashresfn | ⊢ ( ♯ ↾ ω ) Fn ω | |
| 2 | frfnom | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) Fn ω | |
| 3 | eqfnfv | ⊢ ( ( ( ♯ ↾ ω ) Fn ω ∧ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) Fn ω ) → ( ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ↔ ∀ 𝑦 ∈ ω ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑦 ) ) ) | |
| 4 | 1 2 3 | mp2an | ⊢ ( ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ↔ ∀ 𝑦 ∈ ω ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑦 ) ) |
| 5 | fvres | ⊢ ( 𝑦 ∈ ω → ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ♯ ‘ 𝑦 ) ) | |
| 6 | nnfi | ⊢ ( 𝑦 ∈ ω → 𝑦 ∈ Fin ) | |
| 7 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 8 | 7 | hashgval | ⊢ ( 𝑦 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝑦 ) ) = ( ♯ ‘ 𝑦 ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝑦 ) ) = ( ♯ ‘ 𝑦 ) ) |
| 10 | cardnn | ⊢ ( 𝑦 ∈ ω → ( card ‘ 𝑦 ) = 𝑦 ) | |
| 11 | 10 | fveq2d | ⊢ ( 𝑦 ∈ ω → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝑦 ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑦 ) ) |
| 12 | 5 9 11 | 3eqtr2d | ⊢ ( 𝑦 ∈ ω → ( ( ♯ ↾ ω ) ‘ 𝑦 ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ 𝑦 ) ) |
| 13 | 4 12 | mprgbir | ⊢ ( ♯ ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) |