This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Translate the Ackermann bijection ackbij1 onto the positive integers. (Contributed by Mario Carneiro, 16-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbijnn.1 | |- F = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ y e. x ( 2 ^ y ) ) |
|
| Assertion | ackbijnn | |- F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbijnn.1 | |- F = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ y e. x ( 2 ^ y ) ) |
|
| 2 | hashgval2 | |- ( # |` _om ) = ( rec ( ( x e. _V |-> ( x + 1 ) ) , 0 ) |` _om ) |
|
| 3 | 2 | hashgf1o | |- ( # |` _om ) : _om -1-1-onto-> NN0 |
| 4 | sneq | |- ( w = y -> { w } = { y } ) |
|
| 5 | pweq | |- ( w = y -> ~P w = ~P y ) |
|
| 6 | 4 5 | xpeq12d | |- ( w = y -> ( { w } X. ~P w ) = ( { y } X. ~P y ) ) |
| 7 | 6 | cbviunv | |- U_ w e. z ( { w } X. ~P w ) = U_ y e. z ( { y } X. ~P y ) |
| 8 | iuneq1 | |- ( z = x -> U_ y e. z ( { y } X. ~P y ) = U_ y e. x ( { y } X. ~P y ) ) |
|
| 9 | 7 8 | eqtrid | |- ( z = x -> U_ w e. z ( { w } X. ~P w ) = U_ y e. x ( { y } X. ~P y ) ) |
| 10 | 9 | fveq2d | |- ( z = x -> ( card ` U_ w e. z ( { w } X. ~P w ) ) = ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 11 | 10 | cbvmptv | |- ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) = ( x e. ( ~P _om i^i Fin ) |-> ( card ` U_ y e. x ( { y } X. ~P y ) ) ) |
| 12 | 11 | ackbij1 | |- ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om |
| 13 | f1ocnv | |- ( ( # |` _om ) : _om -1-1-onto-> NN0 -> `' ( # |` _om ) : NN0 -1-1-onto-> _om ) |
|
| 14 | 3 13 | ax-mp | |- `' ( # |` _om ) : NN0 -1-1-onto-> _om |
| 15 | f1opwfi | |- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) ) |
|
| 16 | 14 15 | ax-mp | |- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) |
| 17 | f1oco | |- ( ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) : ( ~P _om i^i Fin ) -1-1-onto-> _om /\ ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) ) -> ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om ) |
|
| 18 | 12 16 17 | mp2an | |- ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om |
| 19 | f1oco | |- ( ( ( # |` _om ) : _om -1-1-onto-> NN0 /\ ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> _om ) -> ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
|
| 20 | 3 18 19 | mp2an | |- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 |
| 21 | inss2 | |- ( ~P _om i^i Fin ) C_ Fin |
|
| 22 | f1of | |- ( ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> ( ~P _om i^i Fin ) -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) ) |
|
| 23 | 16 22 | ax-mp | |- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) |
| 24 | eqid | |- ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) |
|
| 25 | 24 | fmpt | |- ( A. x e. ( ~P NN0 i^i Fin ) ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) <-> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) : ( ~P NN0 i^i Fin ) --> ( ~P _om i^i Fin ) ) |
| 26 | 23 25 | mpbir | |- A. x e. ( ~P NN0 i^i Fin ) ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) |
| 27 | 26 | rspec | |- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) ) |
| 28 | 21 27 | sselid | |- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) " x ) e. Fin ) |
| 29 | snfi | |- { w } e. Fin |
|
| 30 | cnvimass | |- ( `' ( # |` _om ) " x ) C_ dom ( # |` _om ) |
|
| 31 | dmhashres | |- dom ( # |` _om ) = _om |
|
| 32 | 30 31 | sseqtri | |- ( `' ( # |` _om ) " x ) C_ _om |
| 33 | onfin2 | |- _om = ( On i^i Fin ) |
|
| 34 | inss2 | |- ( On i^i Fin ) C_ Fin |
|
| 35 | 33 34 | eqsstri | |- _om C_ Fin |
| 36 | 32 35 | sstri | |- ( `' ( # |` _om ) " x ) C_ Fin |
| 37 | simpr | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> w e. ( `' ( # |` _om ) " x ) ) |
|
| 38 | 36 37 | sselid | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> w e. Fin ) |
| 39 | pwfi | |- ( w e. Fin <-> ~P w e. Fin ) |
|
| 40 | 38 39 | sylib | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ~P w e. Fin ) |
| 41 | xpfi | |- ( ( { w } e. Fin /\ ~P w e. Fin ) -> ( { w } X. ~P w ) e. Fin ) |
|
| 42 | 29 40 41 | sylancr | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ( { w } X. ~P w ) e. Fin ) |
| 43 | 42 | ralrimiva | |- ( x e. ( ~P NN0 i^i Fin ) -> A. w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
| 44 | iunfi | |- ( ( ( `' ( # |` _om ) " x ) e. Fin /\ A. w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) -> U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
|
| 45 | 28 43 44 | syl2anc | |- ( x e. ( ~P NN0 i^i Fin ) -> U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin ) |
| 46 | ficardom | |- ( U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
|
| 47 | 45 46 | syl | |- ( x e. ( ~P NN0 i^i Fin ) -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
| 48 | 47 | fvresd | |- ( x e. ( ~P NN0 i^i Fin ) -> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
| 49 | hashcard | |- ( U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) e. Fin -> ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
|
| 50 | 45 49 | syl | |- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
| 51 | xp1st | |- ( z e. ( { w } X. ~P w ) -> ( 1st ` z ) e. { w } ) |
|
| 52 | elsni | |- ( ( 1st ` z ) e. { w } -> ( 1st ` z ) = w ) |
|
| 53 | 51 52 | syl | |- ( z e. ( { w } X. ~P w ) -> ( 1st ` z ) = w ) |
| 54 | 53 | rgen | |- A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w |
| 55 | 54 | rgenw | |- A. w e. ( `' ( # |` _om ) " x ) A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w |
| 56 | invdisj | |- ( A. w e. ( `' ( # |` _om ) " x ) A. z e. ( { w } X. ~P w ) ( 1st ` z ) = w -> Disj_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
|
| 57 | 55 56 | mp1i | |- ( x e. ( ~P NN0 i^i Fin ) -> Disj_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
| 58 | 28 42 57 | hashiun | |- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) = sum_ w e. ( `' ( # |` _om ) " x ) ( # ` ( { w } X. ~P w ) ) ) |
| 59 | sneq | |- ( w = ( `' ( # |` _om ) ` y ) -> { w } = { ( `' ( # |` _om ) ` y ) } ) |
|
| 60 | pweq | |- ( w = ( `' ( # |` _om ) ` y ) -> ~P w = ~P ( `' ( # |` _om ) ` y ) ) |
|
| 61 | 59 60 | xpeq12d | |- ( w = ( `' ( # |` _om ) ` y ) -> ( { w } X. ~P w ) = ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) |
| 62 | 61 | fveq2d | |- ( w = ( `' ( # |` _om ) ` y ) -> ( # ` ( { w } X. ~P w ) ) = ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) ) |
| 63 | elinel2 | |- ( x e. ( ~P NN0 i^i Fin ) -> x e. Fin ) |
|
| 64 | f1of1 | |- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> `' ( # |` _om ) : NN0 -1-1-> _om ) |
|
| 65 | 14 64 | ax-mp | |- `' ( # |` _om ) : NN0 -1-1-> _om |
| 66 | elinel1 | |- ( x e. ( ~P NN0 i^i Fin ) -> x e. ~P NN0 ) |
|
| 67 | 66 | elpwid | |- ( x e. ( ~P NN0 i^i Fin ) -> x C_ NN0 ) |
| 68 | f1ores | |- ( ( `' ( # |` _om ) : NN0 -1-1-> _om /\ x C_ NN0 ) -> ( `' ( # |` _om ) |` x ) : x -1-1-onto-> ( `' ( # |` _om ) " x ) ) |
|
| 69 | 65 67 68 | sylancr | |- ( x e. ( ~P NN0 i^i Fin ) -> ( `' ( # |` _om ) |` x ) : x -1-1-onto-> ( `' ( # |` _om ) " x ) ) |
| 70 | fvres | |- ( y e. x -> ( ( `' ( # |` _om ) |` x ) ` y ) = ( `' ( # |` _om ) ` y ) ) |
|
| 71 | 70 | adantl | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( `' ( # |` _om ) |` x ) ` y ) = ( `' ( # |` _om ) ` y ) ) |
| 72 | hashcl | |- ( ( { w } X. ~P w ) e. Fin -> ( # ` ( { w } X. ~P w ) ) e. NN0 ) |
|
| 73 | nn0cn | |- ( ( # ` ( { w } X. ~P w ) ) e. NN0 -> ( # ` ( { w } X. ~P w ) ) e. CC ) |
|
| 74 | 42 72 73 | 3syl | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ w e. ( `' ( # |` _om ) " x ) ) -> ( # ` ( { w } X. ~P w ) ) e. CC ) |
| 75 | 62 63 69 71 74 | fsumf1o | |- ( x e. ( ~P NN0 i^i Fin ) -> sum_ w e. ( `' ( # |` _om ) " x ) ( # ` ( { w } X. ~P w ) ) = sum_ y e. x ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) ) |
| 76 | snfi | |- { ( `' ( # |` _om ) ` y ) } e. Fin |
|
| 77 | 67 | sselda | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> y e. NN0 ) |
| 78 | f1of | |- ( `' ( # |` _om ) : NN0 -1-1-onto-> _om -> `' ( # |` _om ) : NN0 --> _om ) |
|
| 79 | 14 78 | ax-mp | |- `' ( # |` _om ) : NN0 --> _om |
| 80 | 79 | ffvelcdmi | |- ( y e. NN0 -> ( `' ( # |` _om ) ` y ) e. _om ) |
| 81 | 77 80 | syl | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( `' ( # |` _om ) ` y ) e. _om ) |
| 82 | 35 81 | sselid | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( `' ( # |` _om ) ` y ) e. Fin ) |
| 83 | pwfi | |- ( ( `' ( # |` _om ) ` y ) e. Fin <-> ~P ( `' ( # |` _om ) ` y ) e. Fin ) |
|
| 84 | 82 83 | sylib | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ~P ( `' ( # |` _om ) ` y ) e. Fin ) |
| 85 | hashxp | |- ( ( { ( `' ( # |` _om ) ` y ) } e. Fin /\ ~P ( `' ( # |` _om ) ` y ) e. Fin ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) ) |
|
| 86 | 76 84 85 | sylancr | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) ) |
| 87 | hashsng | |- ( ( `' ( # |` _om ) ` y ) e. _om -> ( # ` { ( `' ( # |` _om ) ` y ) } ) = 1 ) |
|
| 88 | 81 87 | syl | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` { ( `' ( # |` _om ) ` y ) } ) = 1 ) |
| 89 | hashpw | |- ( ( `' ( # |` _om ) ` y ) e. Fin -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) ) |
|
| 90 | 82 89 | syl | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) ) |
| 91 | 81 | fvresd | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = ( # ` ( `' ( # |` _om ) ` y ) ) ) |
| 92 | f1ocnvfv2 | |- ( ( ( # |` _om ) : _om -1-1-onto-> NN0 /\ y e. NN0 ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = y ) |
|
| 93 | 3 77 92 | sylancr | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # |` _om ) ` ( `' ( # |` _om ) ` y ) ) = y ) |
| 94 | 91 93 | eqtr3d | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( `' ( # |` _om ) ` y ) ) = y ) |
| 95 | 94 | oveq2d | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 2 ^ ( # ` ( `' ( # |` _om ) ` y ) ) ) = ( 2 ^ y ) ) |
| 96 | 90 95 | eqtrd | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ~P ( `' ( # |` _om ) ` y ) ) = ( 2 ^ y ) ) |
| 97 | 88 96 | oveq12d | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( ( # ` { ( `' ( # |` _om ) ` y ) } ) x. ( # ` ~P ( `' ( # |` _om ) ` y ) ) ) = ( 1 x. ( 2 ^ y ) ) ) |
| 98 | 2cn | |- 2 e. CC |
|
| 99 | expcl | |- ( ( 2 e. CC /\ y e. NN0 ) -> ( 2 ^ y ) e. CC ) |
|
| 100 | 98 77 99 | sylancr | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 2 ^ y ) e. CC ) |
| 101 | 100 | mullidd | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( 1 x. ( 2 ^ y ) ) = ( 2 ^ y ) ) |
| 102 | 86 97 101 | 3eqtrd | |- ( ( x e. ( ~P NN0 i^i Fin ) /\ y e. x ) -> ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = ( 2 ^ y ) ) |
| 103 | 102 | sumeq2dv | |- ( x e. ( ~P NN0 i^i Fin ) -> sum_ y e. x ( # ` ( { ( `' ( # |` _om ) ` y ) } X. ~P ( `' ( # |` _om ) ` y ) ) ) = sum_ y e. x ( 2 ^ y ) ) |
| 104 | 58 75 103 | 3eqtrd | |- ( x e. ( ~P NN0 i^i Fin ) -> ( # ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) = sum_ y e. x ( 2 ^ y ) ) |
| 105 | 48 50 104 | 3eqtrd | |- ( x e. ( ~P NN0 i^i Fin ) -> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) = sum_ y e. x ( 2 ^ y ) ) |
| 106 | 105 | mpteq2ia | |- ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> sum_ y e. x ( 2 ^ y ) ) |
| 107 | 47 | adantl | |- ( ( T. /\ x e. ( ~P NN0 i^i Fin ) ) -> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) e. _om ) |
| 108 | 27 | adantl | |- ( ( T. /\ x e. ( ~P NN0 i^i Fin ) ) -> ( `' ( # |` _om ) " x ) e. ( ~P _om i^i Fin ) ) |
| 109 | eqidd | |- ( T. -> ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) |
|
| 110 | eqidd | |- ( T. -> ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) = ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) ) |
|
| 111 | iuneq1 | |- ( z = ( `' ( # |` _om ) " x ) -> U_ w e. z ( { w } X. ~P w ) = U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) |
|
| 112 | 111 | fveq2d | |- ( z = ( `' ( # |` _om ) " x ) -> ( card ` U_ w e. z ( { w } X. ~P w ) ) = ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) |
| 113 | 108 109 110 112 | fmptco | |- ( T. -> ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
| 114 | f1of | |- ( ( # |` _om ) : _om -1-1-onto-> NN0 -> ( # |` _om ) : _om --> NN0 ) |
|
| 115 | 3 114 | mp1i | |- ( T. -> ( # |` _om ) : _om --> NN0 ) |
| 116 | 115 | feqmptd | |- ( T. -> ( # |` _om ) = ( y e. _om |-> ( ( # |` _om ) ` y ) ) ) |
| 117 | fveq2 | |- ( y = ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) -> ( ( # |` _om ) ` y ) = ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
|
| 118 | 107 113 116 117 | fmptco | |- ( T. -> ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) ) |
| 119 | 118 | mptru | |- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = ( x e. ( ~P NN0 i^i Fin ) |-> ( ( # |` _om ) ` ( card ` U_ w e. ( `' ( # |` _om ) " x ) ( { w } X. ~P w ) ) ) ) |
| 120 | 106 119 1 | 3eqtr4i | |- ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = F |
| 121 | f1oeq1 | |- ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) = F -> ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 <-> F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) ) |
|
| 122 | 120 121 | ax-mp | |- ( ( ( # |` _om ) o. ( ( z e. ( ~P _om i^i Fin ) |-> ( card ` U_ w e. z ( { w } X. ~P w ) ) ) o. ( x e. ( ~P NN0 i^i Fin ) |-> ( `' ( # |` _om ) " x ) ) ) ) : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 <-> F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 ) |
| 123 | 20 122 | mpbi | |- F : ( ~P NN0 i^i Fin ) -1-1-onto-> NN0 |