This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The size function of the cardinality function. (Contributed by Mario Carneiro, 19-Sep-2013) (Revised by Mario Carneiro, 4-Nov-2013)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | hashcard | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cardidm | ⊢ ( card ‘ ( card ‘ 𝐴 ) ) = ( card ‘ 𝐴 ) | |
| 2 | 1 | fveq2i | ⊢ ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( card ‘ 𝐴 ) ) ) = ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) |
| 3 | ficardom | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ ω ) | |
| 4 | ssid | ⊢ ( card ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) | |
| 5 | ssnnfi | ⊢ ( ( ( card ‘ 𝐴 ) ∈ ω ∧ ( card ‘ 𝐴 ) ⊆ ( card ‘ 𝐴 ) ) → ( card ‘ 𝐴 ) ∈ Fin ) | |
| 6 | 3 4 5 | sylancl | ⊢ ( 𝐴 ∈ Fin → ( card ‘ 𝐴 ) ∈ Fin ) |
| 7 | eqid | ⊢ ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) = ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) | |
| 8 | 7 | hashgval | ⊢ ( ( card ‘ 𝐴 ) ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( card ‘ 𝐴 ) ) ) = ( ♯ ‘ ( card ‘ 𝐴 ) ) ) |
| 9 | 6 8 | syl | ⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ ( card ‘ 𝐴 ) ) ) = ( ♯ ‘ ( card ‘ 𝐴 ) ) ) |
| 10 | 7 | hashgval | ⊢ ( 𝐴 ∈ Fin → ( ( rec ( ( 𝑥 ∈ V ↦ ( 𝑥 + 1 ) ) , 0 ) ↾ ω ) ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |
| 11 | 2 9 10 | 3eqtr3a | ⊢ ( 𝐴 ∈ Fin → ( ♯ ‘ ( card ‘ 𝐴 ) ) = ( ♯ ‘ 𝐴 ) ) |