This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A one-to-one mapping induces a one-to-one mapping on finite subsets. (Contributed by Mario Carneiro, 25-Jan-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | f1opwfi | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐹 “ 𝑏 ) ) : ( 𝒫 𝐴 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐵 ∩ Fin ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | eqid | ⊢ ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐹 “ 𝑏 ) ) = ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐹 “ 𝑏 ) ) | |
| 2 | simpr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) | |
| 3 | 2 | elin2d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑏 ∈ Fin ) |
| 4 | f1ofun | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Fun 𝐹 ) | |
| 5 | elinel1 | ⊢ ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑏 ∈ 𝒫 𝐴 ) | |
| 6 | elpwi | ⊢ ( 𝑏 ∈ 𝒫 𝐴 → 𝑏 ⊆ 𝐴 ) | |
| 7 | 5 6 | syl | ⊢ ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) → 𝑏 ⊆ 𝐴 ) |
| 8 | 7 | adantl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑏 ⊆ 𝐴 ) |
| 9 | f1odm | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → dom 𝐹 = 𝐴 ) | |
| 10 | 9 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → dom 𝐹 = 𝐴 ) |
| 11 | 8 10 | sseqtrrd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → 𝑏 ⊆ dom 𝐹 ) |
| 12 | fores | ⊢ ( ( Fun 𝐹 ∧ 𝑏 ⊆ dom 𝐹 ) → ( 𝐹 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐹 “ 𝑏 ) ) | |
| 13 | 4 11 12 | syl2an2r | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐹 “ 𝑏 ) ) |
| 14 | fofi | ⊢ ( ( 𝑏 ∈ Fin ∧ ( 𝐹 ↾ 𝑏 ) : 𝑏 –onto→ ( 𝐹 “ 𝑏 ) ) → ( 𝐹 “ 𝑏 ) ∈ Fin ) | |
| 15 | 3 13 14 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑏 ) ∈ Fin ) |
| 16 | imassrn | ⊢ ( 𝐹 “ 𝑏 ) ⊆ ran 𝐹 | |
| 17 | f1ofo | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –onto→ 𝐵 ) | |
| 18 | forn | ⊢ ( 𝐹 : 𝐴 –onto→ 𝐵 → ran 𝐹 = 𝐵 ) | |
| 19 | 17 18 | syl | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran 𝐹 = 𝐵 ) |
| 20 | 16 19 | sseqtrid | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝐹 “ 𝑏 ) ⊆ 𝐵 ) |
| 21 | 20 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑏 ) ⊆ 𝐵 ) |
| 22 | 15 21 | elpwd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑏 ) ∈ 𝒫 𝐵 ) |
| 23 | 22 15 | elind | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ) → ( 𝐹 “ 𝑏 ) ∈ ( 𝒫 𝐵 ∩ Fin ) ) |
| 24 | simpr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) | |
| 25 | 24 | elin2d | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ∈ Fin ) |
| 26 | dff1o3 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ↔ ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ Fun ◡ 𝐹 ) ) | |
| 27 | 26 | simprbi | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → Fun ◡ 𝐹 ) |
| 28 | elinel1 | ⊢ ( 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) → 𝑎 ∈ 𝒫 𝐵 ) | |
| 29 | 28 | adantl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ∈ 𝒫 𝐵 ) |
| 30 | elpwi | ⊢ ( 𝑎 ∈ 𝒫 𝐵 → 𝑎 ⊆ 𝐵 ) | |
| 31 | 29 30 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ⊆ 𝐵 ) |
| 32 | f1ocnv | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) | |
| 33 | 32 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 ) |
| 34 | f1odm | ⊢ ( ◡ 𝐹 : 𝐵 –1-1-onto→ 𝐴 → dom ◡ 𝐹 = 𝐵 ) | |
| 35 | 33 34 | syl | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → dom ◡ 𝐹 = 𝐵 ) |
| 36 | 31 35 | sseqtrrd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → 𝑎 ⊆ dom ◡ 𝐹 ) |
| 37 | fores | ⊢ ( ( Fun ◡ 𝐹 ∧ 𝑎 ⊆ dom ◡ 𝐹 ) → ( ◡ 𝐹 ↾ 𝑎 ) : 𝑎 –onto→ ( ◡ 𝐹 “ 𝑎 ) ) | |
| 38 | 27 36 37 | syl2an2r | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 ↾ 𝑎 ) : 𝑎 –onto→ ( ◡ 𝐹 “ 𝑎 ) ) |
| 39 | fofi | ⊢ ( ( 𝑎 ∈ Fin ∧ ( ◡ 𝐹 ↾ 𝑎 ) : 𝑎 –onto→ ( ◡ 𝐹 “ 𝑎 ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ Fin ) | |
| 40 | 25 38 39 | syl2anc | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ Fin ) |
| 41 | imassrn | ⊢ ( ◡ 𝐹 “ 𝑎 ) ⊆ ran ◡ 𝐹 | |
| 42 | dfdm4 | ⊢ dom 𝐹 = ran ◡ 𝐹 | |
| 43 | 42 9 | eqtr3id | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ran ◡ 𝐹 = 𝐴 ) |
| 44 | 41 43 | sseqtrid | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
| 45 | 44 | adantr | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑎 ) ⊆ 𝐴 ) |
| 46 | 40 45 | elpwd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ 𝒫 𝐴 ) |
| 47 | 46 40 | elind | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( ◡ 𝐹 “ 𝑎 ) ∈ ( 𝒫 𝐴 ∩ Fin ) ) |
| 48 | 5 28 | anim12i | ⊢ ( ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) → ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) |
| 49 | 30 | adantl | ⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑎 ⊆ 𝐵 ) |
| 50 | foimacnv | ⊢ ( ( 𝐹 : 𝐴 –onto→ 𝐵 ∧ 𝑎 ⊆ 𝐵 ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) | |
| 51 | 17 49 50 | syl2an | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) = 𝑎 ) |
| 52 | 51 | eqcomd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 53 | imaeq2 | ⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝐹 “ 𝑏 ) = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) | |
| 54 | 53 | eqeq2d | ⊢ ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) ↔ 𝑎 = ( 𝐹 “ ( ◡ 𝐹 “ 𝑎 ) ) ) ) |
| 55 | 52 54 | syl5ibrcom | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) → 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 56 | f1of1 | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → 𝐹 : 𝐴 –1-1→ 𝐵 ) | |
| 57 | 6 | adantr | ⊢ ( ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) → 𝑏 ⊆ 𝐴 ) |
| 58 | f1imacnv | ⊢ ( ( 𝐹 : 𝐴 –1-1→ 𝐵 ∧ 𝑏 ⊆ 𝐴 ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) | |
| 59 | 56 57 58 | syl2an | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) = 𝑏 ) |
| 60 | 59 | eqcomd | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) |
| 61 | imaeq2 | ⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( ◡ 𝐹 “ 𝑎 ) = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) | |
| 62 | 61 | eqeq2d | ⊢ ( 𝑎 = ( 𝐹 “ 𝑏 ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑏 = ( ◡ 𝐹 “ ( 𝐹 “ 𝑏 ) ) ) ) |
| 63 | 60 62 | syl5ibrcom | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑎 = ( 𝐹 “ 𝑏 ) → 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ) ) |
| 64 | 55 63 | impbid | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ 𝒫 𝐴 ∧ 𝑎 ∈ 𝒫 𝐵 ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 65 | 48 64 | sylan2 | ⊢ ( ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 ∧ ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ∧ 𝑎 ∈ ( 𝒫 𝐵 ∩ Fin ) ) ) → ( 𝑏 = ( ◡ 𝐹 “ 𝑎 ) ↔ 𝑎 = ( 𝐹 “ 𝑏 ) ) ) |
| 66 | 1 23 47 65 | f1o2d | ⊢ ( 𝐹 : 𝐴 –1-1-onto→ 𝐵 → ( 𝑏 ∈ ( 𝒫 𝐴 ∩ Fin ) ↦ ( 𝐹 “ 𝑏 ) ) : ( 𝒫 𝐴 ∩ Fin ) –1-1-onto→ ( 𝒫 𝐵 ∩ Fin ) ) |