This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The cardinality of a disjoint indexed union. (Contributed by Mario Carneiro, 24-Jan-2015) (Revised by Mario Carneiro, 10-Dec-2016)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | fsumiun.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| fsumiun.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | ||
| fsumiun.3 | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) | ||
| Assertion | hashiun | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝐵 ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | fsumiun.1 | ⊢ ( 𝜑 → 𝐴 ∈ Fin ) | |
| 2 | fsumiun.2 | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → 𝐵 ∈ Fin ) | |
| 3 | fsumiun.3 | ⊢ ( 𝜑 → Disj 𝑥 ∈ 𝐴 𝐵 ) | |
| 4 | 1cnd | ⊢ ( ( 𝜑 ∧ ( 𝑥 ∈ 𝐴 ∧ 𝑘 ∈ 𝐵 ) ) → 1 ∈ ℂ ) | |
| 5 | 1 2 3 4 | fsumiun | ⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 1 = Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 1 ) |
| 6 | 2 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
| 7 | iunfi | ⊢ ( ( 𝐴 ∈ Fin ∧ ∀ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) | |
| 8 | 1 6 7 | syl2anc | ⊢ ( 𝜑 → ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ) |
| 9 | ax-1cn | ⊢ 1 ∈ ℂ | |
| 10 | fsumconst | ⊢ ( ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 1 = ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) · 1 ) ) | |
| 11 | 8 9 10 | sylancl | ⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 1 = ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) · 1 ) ) |
| 12 | hashcl | ⊢ ( ∪ 𝑥 ∈ 𝐴 𝐵 ∈ Fin → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ ℕ0 ) | |
| 13 | nn0cn | ⊢ ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ ℕ0 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ ℂ ) | |
| 14 | mulrid | ⊢ ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ∈ ℂ → ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) · 1 ) = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) | |
| 15 | 8 12 13 14 | 4syl | ⊢ ( 𝜑 → ( ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) · 1 ) = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 16 | 11 15 | eqtrd | ⊢ ( 𝜑 → Σ 𝑘 ∈ ∪ 𝑥 ∈ 𝐴 𝐵 1 = ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) ) |
| 17 | fsumconst | ⊢ ( ( 𝐵 ∈ Fin ∧ 1 ∈ ℂ ) → Σ 𝑘 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐵 ) · 1 ) ) | |
| 18 | 2 9 17 | sylancl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 1 = ( ( ♯ ‘ 𝐵 ) · 1 ) ) |
| 19 | hashcl | ⊢ ( 𝐵 ∈ Fin → ( ♯ ‘ 𝐵 ) ∈ ℕ0 ) | |
| 20 | nn0cn | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℕ0 → ( ♯ ‘ 𝐵 ) ∈ ℂ ) | |
| 21 | mulrid | ⊢ ( ( ♯ ‘ 𝐵 ) ∈ ℂ → ( ( ♯ ‘ 𝐵 ) · 1 ) = ( ♯ ‘ 𝐵 ) ) | |
| 22 | 2 19 20 21 | 4syl | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → ( ( ♯ ‘ 𝐵 ) · 1 ) = ( ♯ ‘ 𝐵 ) ) |
| 23 | 18 22 | eqtrd | ⊢ ( ( 𝜑 ∧ 𝑥 ∈ 𝐴 ) → Σ 𝑘 ∈ 𝐵 1 = ( ♯ ‘ 𝐵 ) ) |
| 24 | 23 | sumeq2dv | ⊢ ( 𝜑 → Σ 𝑥 ∈ 𝐴 Σ 𝑘 ∈ 𝐵 1 = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝐵 ) ) |
| 25 | 5 16 24 | 3eqtr3d | ⊢ ( 𝜑 → ( ♯ ‘ ∪ 𝑥 ∈ 𝐴 𝐵 ) = Σ 𝑥 ∈ 𝐴 ( ♯ ‘ 𝐵 ) ) |