This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The Ackermann bijection, part 1: each natural number can be uniquely coded in binary as a finite set of natural numbers and conversely. (Contributed by Stefan O'Rear, 18-Nov-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| Assertion | ackbij1 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ackbij.f | ⊢ 𝐹 = ( 𝑥 ∈ ( 𝒫 ω ∩ Fin ) ↦ ( card ‘ ∪ 𝑦 ∈ 𝑥 ( { 𝑦 } × 𝒫 𝑦 ) ) ) | |
| 2 | 1 | ackbij1lem17 | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω |
| 3 | f1f | ⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω ) | |
| 4 | frn | ⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) ⟶ ω → ran 𝐹 ⊆ ω ) | |
| 5 | 2 3 4 | mp2b | ⊢ ran 𝐹 ⊆ ω |
| 6 | eleq1 | ⊢ ( 𝑏 = ∅ → ( 𝑏 ∈ ran 𝐹 ↔ ∅ ∈ ran 𝐹 ) ) | |
| 7 | eleq1 | ⊢ ( 𝑏 = 𝑎 → ( 𝑏 ∈ ran 𝐹 ↔ 𝑎 ∈ ran 𝐹 ) ) | |
| 8 | eleq1 | ⊢ ( 𝑏 = suc 𝑎 → ( 𝑏 ∈ ran 𝐹 ↔ suc 𝑎 ∈ ran 𝐹 ) ) | |
| 9 | peano1 | ⊢ ∅ ∈ ω | |
| 10 | ackbij1lem3 | ⊢ ( ∅ ∈ ω → ∅ ∈ ( 𝒫 ω ∩ Fin ) ) | |
| 11 | 9 10 | ax-mp | ⊢ ∅ ∈ ( 𝒫 ω ∩ Fin ) |
| 12 | 1 | ackbij1lem13 | ⊢ ( 𝐹 ‘ ∅ ) = ∅ |
| 13 | fveqeq2 | ⊢ ( 𝑎 = ∅ → ( ( 𝐹 ‘ 𝑎 ) = ∅ ↔ ( 𝐹 ‘ ∅ ) = ∅ ) ) | |
| 14 | 13 | rspcev | ⊢ ( ( ∅ ∈ ( 𝒫 ω ∩ Fin ) ∧ ( 𝐹 ‘ ∅ ) = ∅ ) → ∃ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑎 ) = ∅ ) |
| 15 | 11 12 14 | mp2an | ⊢ ∃ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑎 ) = ∅ |
| 16 | f1fn | ⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω → 𝐹 Fn ( 𝒫 ω ∩ Fin ) ) | |
| 17 | 2 16 | ax-mp | ⊢ 𝐹 Fn ( 𝒫 ω ∩ Fin ) |
| 18 | fvelrnb | ⊢ ( 𝐹 Fn ( 𝒫 ω ∩ Fin ) → ( ∅ ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑎 ) = ∅ ) ) | |
| 19 | 17 18 | ax-mp | ⊢ ( ∅ ∈ ran 𝐹 ↔ ∃ 𝑎 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑎 ) = ∅ ) |
| 20 | 15 19 | mpbir | ⊢ ∅ ∈ ran 𝐹 |
| 21 | 1 | ackbij1lem18 | ⊢ ( 𝑐 ∈ ( 𝒫 ω ∩ Fin ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝑐 ) ) |
| 22 | 21 | adantl | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ) → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝑐 ) ) |
| 23 | suceq | ⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑎 → suc ( 𝐹 ‘ 𝑐 ) = suc 𝑎 ) | |
| 24 | 23 | eqeq2d | ⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑎 → ( ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝑐 ) ↔ ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
| 25 | 24 | rexbidv | ⊢ ( ( 𝐹 ‘ 𝑐 ) = 𝑎 → ( ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc ( 𝐹 ‘ 𝑐 ) ↔ ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
| 26 | 22 25 | syl5ibcom | ⊢ ( ( 𝑎 ∈ ω ∧ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ) → ( ( 𝐹 ‘ 𝑐 ) = 𝑎 → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
| 27 | 26 | rexlimdva | ⊢ ( 𝑎 ∈ ω → ( ∃ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑐 ) = 𝑎 → ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) |
| 28 | fvelrnb | ⊢ ( 𝐹 Fn ( 𝒫 ω ∩ Fin ) → ( 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑐 ) = 𝑎 ) ) | |
| 29 | 17 28 | ax-mp | ⊢ ( 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑐 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑐 ) = 𝑎 ) |
| 30 | fvelrnb | ⊢ ( 𝐹 Fn ( 𝒫 ω ∩ Fin ) → ( suc 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) ) | |
| 31 | 17 30 | ax-mp | ⊢ ( suc 𝑎 ∈ ran 𝐹 ↔ ∃ 𝑏 ∈ ( 𝒫 ω ∩ Fin ) ( 𝐹 ‘ 𝑏 ) = suc 𝑎 ) |
| 32 | 27 29 31 | 3imtr4g | ⊢ ( 𝑎 ∈ ω → ( 𝑎 ∈ ran 𝐹 → suc 𝑎 ∈ ran 𝐹 ) ) |
| 33 | 6 7 8 7 20 32 | finds | ⊢ ( 𝑎 ∈ ω → 𝑎 ∈ ran 𝐹 ) |
| 34 | 33 | ssriv | ⊢ ω ⊆ ran 𝐹 |
| 35 | 5 34 | eqssi | ⊢ ran 𝐹 = ω |
| 36 | dff1o5 | ⊢ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω ↔ ( 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1→ ω ∧ ran 𝐹 = ω ) ) | |
| 37 | 2 35 36 | mpbir2an | ⊢ 𝐹 : ( 𝒫 ω ∩ Fin ) –1-1-onto→ ω |