This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The one-point compactification of NN is compact. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | 1stckgen.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 1stckgen.2 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | ||
| 1stckgen.3 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) | ||
| Assertion | 1stckgenlem | ⊢ ( 𝜑 → ( 𝐽 ↾t ( ran 𝐹 ∪ { 𝐴 } ) ) ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stckgen.1 | ⊢ ( 𝜑 → 𝐽 ∈ ( TopOn ‘ 𝑋 ) ) | |
| 2 | 1stckgen.2 | ⊢ ( 𝜑 → 𝐹 : ℕ ⟶ 𝑋 ) | |
| 3 | 1stckgen.3 | ⊢ ( 𝜑 → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) | |
| 4 | simprr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) | |
| 5 | ssun2 | ⊢ { 𝐴 } ⊆ ( ran 𝐹 ∪ { 𝐴 } ) | |
| 6 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) → 𝐴 ∈ 𝑋 ) | |
| 7 | 1 3 6 | syl2anc | ⊢ ( 𝜑 → 𝐴 ∈ 𝑋 ) |
| 8 | snssg | ⊢ ( 𝐴 ∈ 𝑋 → ( 𝐴 ∈ ( ran 𝐹 ∪ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ran 𝐹 ∪ { 𝐴 } ) ) ) | |
| 9 | 7 8 | syl | ⊢ ( 𝜑 → ( 𝐴 ∈ ( ran 𝐹 ∪ { 𝐴 } ) ↔ { 𝐴 } ⊆ ( ran 𝐹 ∪ { 𝐴 } ) ) ) |
| 10 | 5 9 | mpbiri | ⊢ ( 𝜑 → 𝐴 ∈ ( ran 𝐹 ∪ { 𝐴 } ) ) |
| 11 | 10 | adantr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → 𝐴 ∈ ( ran 𝐹 ∪ { 𝐴 } ) ) |
| 12 | 4 11 | sseldd | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → 𝐴 ∈ ∪ 𝑢 ) |
| 13 | eluni2 | ⊢ ( 𝐴 ∈ ∪ 𝑢 ↔ ∃ 𝑤 ∈ 𝑢 𝐴 ∈ 𝑤 ) | |
| 14 | 12 13 | sylib | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑤 ∈ 𝑢 𝐴 ∈ 𝑤 ) |
| 15 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 16 | simprr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝐴 ∈ 𝑤 ) | |
| 17 | 1zzd | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 1 ∈ ℤ ) | |
| 18 | 3 | ad2antrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝐹 ( ⇝𝑡 ‘ 𝐽 ) 𝐴 ) |
| 19 | simplrl | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝑢 ∈ 𝒫 𝐽 ) | |
| 20 | 19 | elpwid | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝑢 ⊆ 𝐽 ) |
| 21 | simprl | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝑤 ∈ 𝑢 ) | |
| 22 | 20 21 | sseldd | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → 𝑤 ∈ 𝐽 ) |
| 23 | 15 16 17 18 22 | lmcvg | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → ∃ 𝑗 ∈ ℕ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) |
| 24 | imassrn | ⊢ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ran 𝐹 | |
| 25 | ssun1 | ⊢ ran 𝐹 ⊆ ( ran 𝐹 ∪ { 𝐴 } ) | |
| 26 | 24 25 | sstri | ⊢ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ( ran 𝐹 ∪ { 𝐴 } ) |
| 27 | id | ⊢ ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) | |
| 28 | 26 27 | sstrid | ⊢ ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 ) |
| 29 | 2 | frnd | ⊢ ( 𝜑 → ran 𝐹 ⊆ 𝑋 ) |
| 30 | 24 29 | sstrid | ⊢ ( 𝜑 → ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ 𝑋 ) |
| 31 | resttopon | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ 𝑋 ) → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ) | |
| 32 | 1 30 31 | syl2anc | ⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ) |
| 33 | topontop | ⊢ ( ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( TopOn ‘ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Top ) | |
| 34 | 32 33 | syl | ⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Top ) |
| 35 | fzfid | ⊢ ( 𝜑 → ( 1 ... 𝑗 ) ∈ Fin ) | |
| 36 | 2 | ffund | ⊢ ( 𝜑 → Fun 𝐹 ) |
| 37 | fz1ssnn | ⊢ ( 1 ... 𝑗 ) ⊆ ℕ | |
| 38 | 2 | fdmd | ⊢ ( 𝜑 → dom 𝐹 = ℕ ) |
| 39 | 37 38 | sseqtrrid | ⊢ ( 𝜑 → ( 1 ... 𝑗 ) ⊆ dom 𝐹 ) |
| 40 | fores | ⊢ ( ( Fun 𝐹 ∧ ( 1 ... 𝑗 ) ⊆ dom 𝐹 ) → ( 𝐹 ↾ ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) | |
| 41 | 36 39 40 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 ↾ ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) |
| 42 | fofi | ⊢ ( ( ( 1 ... 𝑗 ) ∈ Fin ∧ ( 𝐹 ↾ ( 1 ... 𝑗 ) ) : ( 1 ... 𝑗 ) –onto→ ( 𝐹 “ ( 1 ... 𝑗 ) ) ) → ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ) | |
| 43 | 35 41 42 | syl2anc | ⊢ ( 𝜑 → ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ) |
| 44 | pwfi | ⊢ ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ↔ 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ) | |
| 45 | 43 44 | sylib | ⊢ ( 𝜑 → 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ) |
| 46 | restsspw | ⊢ ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ⊆ 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) | |
| 47 | ssfi | ⊢ ( ( 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) ∈ Fin ∧ ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ⊆ 𝒫 ( 𝐹 “ ( 1 ... 𝑗 ) ) ) → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Fin ) | |
| 48 | 45 46 47 | sylancl | ⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Fin ) |
| 49 | 34 48 | elind | ⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( Top ∩ Fin ) ) |
| 50 | fincmp | ⊢ ( ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ ( Top ∩ Fin ) → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Comp ) | |
| 51 | 49 50 | syl | ⊢ ( 𝜑 → ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Comp ) |
| 52 | topontop | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝐽 ∈ Top ) | |
| 53 | 1 52 | syl | ⊢ ( 𝜑 → 𝐽 ∈ Top ) |
| 54 | toponuni | ⊢ ( 𝐽 ∈ ( TopOn ‘ 𝑋 ) → 𝑋 = ∪ 𝐽 ) | |
| 55 | 1 54 | syl | ⊢ ( 𝜑 → 𝑋 = ∪ 𝐽 ) |
| 56 | 30 55 | sseqtrd | ⊢ ( 𝜑 → ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝐽 ) |
| 57 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 58 | 57 | cmpsub | ⊢ ( ( 𝐽 ∈ Top ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝐽 ) → ( ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ) |
| 59 | 53 56 58 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐽 ↾t ( 𝐹 “ ( 1 ... 𝑗 ) ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ) |
| 60 | 51 59 | mpbid | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝒫 𝐽 ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) |
| 61 | 60 | r19.21bi | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) |
| 62 | 28 61 | syl5 | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) |
| 63 | 62 | impr | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) |
| 64 | 63 | adantr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) → ∃ 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) |
| 65 | simprl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ) | |
| 66 | 65 | elin1d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑠 ∈ 𝒫 𝑢 ) |
| 67 | 66 | elpwid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑠 ⊆ 𝑢 ) |
| 68 | simprll | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) → 𝑤 ∈ 𝑢 ) | |
| 69 | 68 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑤 ∈ 𝑢 ) |
| 70 | 69 | snssd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → { 𝑤 } ⊆ 𝑢 ) |
| 71 | 67 70 | unssd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝑠 ∪ { 𝑤 } ) ⊆ 𝑢 ) |
| 72 | vex | ⊢ 𝑢 ∈ V | |
| 73 | 72 | elpw2 | ⊢ ( ( 𝑠 ∪ { 𝑤 } ) ∈ 𝒫 𝑢 ↔ ( 𝑠 ∪ { 𝑤 } ) ⊆ 𝑢 ) |
| 74 | 71 73 | sylibr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝑠 ∪ { 𝑤 } ) ∈ 𝒫 𝑢 ) |
| 75 | 65 | elin2d | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑠 ∈ Fin ) |
| 76 | snfi | ⊢ { 𝑤 } ∈ Fin | |
| 77 | unfi | ⊢ ( ( 𝑠 ∈ Fin ∧ { 𝑤 } ∈ Fin ) → ( 𝑠 ∪ { 𝑤 } ) ∈ Fin ) | |
| 78 | 75 76 77 | sylancl | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝑠 ∪ { 𝑤 } ) ∈ Fin ) |
| 79 | 74 78 | elind | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝑠 ∪ { 𝑤 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ) |
| 80 | 2 | ffnd | ⊢ ( 𝜑 → 𝐹 Fn ℕ ) |
| 81 | 80 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝐹 Fn ℕ ) |
| 82 | simprrr | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) | |
| 83 | 82 | adantr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) |
| 84 | fveq2 | ⊢ ( 𝑘 = 𝑛 → ( 𝐹 ‘ 𝑘 ) = ( 𝐹 ‘ 𝑛 ) ) | |
| 85 | 84 | eleq1d | ⊢ ( 𝑘 = 𝑛 → ( ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ↔ ( 𝐹 ‘ 𝑛 ) ∈ 𝑤 ) ) |
| 86 | 85 | rspccva | ⊢ ( ( ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑤 ) |
| 87 | 83 86 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ 𝑤 ) |
| 88 | elun2 | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ 𝑤 → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) | |
| 89 | 87 88 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 90 | 89 | adantlr | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 91 | elnnuz | ⊢ ( 𝑛 ∈ ℕ ↔ 𝑛 ∈ ( ℤ≥ ‘ 1 ) ) | |
| 92 | 91 | anbi1i | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
| 93 | elfzuzb | ⊢ ( 𝑛 ∈ ( 1 ... 𝑗 ) ↔ ( 𝑛 ∈ ( ℤ≥ ‘ 1 ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) | |
| 94 | 92 93 | bitr4i | ⊢ ( ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ↔ 𝑛 ∈ ( 1 ... 𝑗 ) ) |
| 95 | simprr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) | |
| 96 | funimass4 | ⊢ ( ( Fun 𝐹 ∧ ( 1 ... 𝑗 ) ⊆ dom 𝐹 ) → ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) ) | |
| 97 | 36 39 96 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) ) |
| 98 | 97 | ad3antrrr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ↔ ∀ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) ) |
| 99 | 95 98 | mpbid | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ∀ 𝑛 ∈ ( 1 ... 𝑗 ) ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) |
| 100 | 99 | r19.21bi | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 ) |
| 101 | elun1 | ⊢ ( ( 𝐹 ‘ 𝑛 ) ∈ ∪ 𝑠 → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) | |
| 102 | 100 101 | syl | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ( 1 ... 𝑗 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 103 | 94 102 | sylan2b | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ ( 𝑛 ∈ ℕ ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 104 | 103 | anassrs | ⊢ ( ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ℕ ) ∧ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 105 | simprl | ⊢ ( ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) → 𝑗 ∈ ℕ ) | |
| 106 | 105 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝑗 ∈ ℕ ) |
| 107 | nnz | ⊢ ( 𝑗 ∈ ℕ → 𝑗 ∈ ℤ ) | |
| 108 | nnz | ⊢ ( 𝑛 ∈ ℕ → 𝑛 ∈ ℤ ) | |
| 109 | uztric | ⊢ ( ( 𝑗 ∈ ℤ ∧ 𝑛 ∈ ℤ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∨ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) | |
| 110 | 107 108 109 | syl2an | ⊢ ( ( 𝑗 ∈ ℕ ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∨ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
| 111 | 106 110 | sylan | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝑛 ∈ ( ℤ≥ ‘ 𝑗 ) ∨ 𝑗 ∈ ( ℤ≥ ‘ 𝑛 ) ) ) |
| 112 | 90 104 111 | mpjaodan | ⊢ ( ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) ∧ 𝑛 ∈ ℕ ) → ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 113 | 112 | ralrimiva | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 114 | fnfvrnss | ⊢ ( ( 𝐹 Fn ℕ ∧ ∀ 𝑛 ∈ ℕ ( 𝐹 ‘ 𝑛 ) ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) → ran 𝐹 ⊆ ( ∪ 𝑠 ∪ 𝑤 ) ) | |
| 115 | 81 113 114 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ran 𝐹 ⊆ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 116 | elun2 | ⊢ ( 𝐴 ∈ 𝑤 → 𝐴 ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) | |
| 117 | 116 | ad2antlr | ⊢ ( ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) → 𝐴 ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 118 | 117 | ad2antlr | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → 𝐴 ∈ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 119 | 118 | snssd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → { 𝐴 } ⊆ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 120 | 115 119 | unssd | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ( ∪ 𝑠 ∪ 𝑤 ) ) |
| 121 | uniun | ⊢ ∪ ( 𝑠 ∪ { 𝑤 } ) = ( ∪ 𝑠 ∪ ∪ { 𝑤 } ) | |
| 122 | unisnv | ⊢ ∪ { 𝑤 } = 𝑤 | |
| 123 | 122 | uneq2i | ⊢ ( ∪ 𝑠 ∪ ∪ { 𝑤 } ) = ( ∪ 𝑠 ∪ 𝑤 ) |
| 124 | 121 123 | eqtri | ⊢ ∪ ( 𝑠 ∪ { 𝑤 } ) = ( ∪ 𝑠 ∪ 𝑤 ) |
| 125 | 120 124 | sseqtrrdi | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ ( 𝑠 ∪ { 𝑤 } ) ) |
| 126 | unieq | ⊢ ( 𝑣 = ( 𝑠 ∪ { 𝑤 } ) → ∪ 𝑣 = ∪ ( 𝑠 ∪ { 𝑤 } ) ) | |
| 127 | 126 | sseq2d | ⊢ ( 𝑣 = ( 𝑠 ∪ { 𝑤 } ) → ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ↔ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ ( 𝑠 ∪ { 𝑤 } ) ) ) |
| 128 | 127 | rspcev | ⊢ ( ( ( 𝑠 ∪ { 𝑤 } ) ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ ( 𝑠 ∪ { 𝑤 } ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
| 129 | 79 125 128 | syl2anc | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) ∧ ( 𝑠 ∈ ( 𝒫 𝑢 ∩ Fin ) ∧ ( 𝐹 “ ( 1 ... 𝑗 ) ) ⊆ ∪ 𝑠 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
| 130 | 64 129 | rexlimddv | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
| 131 | 130 | anassrs | ⊢ ( ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) ∧ ( 𝑗 ∈ ℕ ∧ ∀ 𝑘 ∈ ( ℤ≥ ‘ 𝑗 ) ( 𝐹 ‘ 𝑘 ) ∈ 𝑤 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
| 132 | 23 131 | rexlimddv | ⊢ ( ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) ∧ ( 𝑤 ∈ 𝑢 ∧ 𝐴 ∈ 𝑤 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
| 133 | 14 132 | rexlimddv | ⊢ ( ( 𝜑 ∧ ( 𝑢 ∈ 𝒫 𝐽 ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 ) ) → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) |
| 134 | 133 | expr | ⊢ ( ( 𝜑 ∧ 𝑢 ∈ 𝒫 𝐽 ) → ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) ) |
| 135 | 134 | ralrimiva | ⊢ ( 𝜑 → ∀ 𝑢 ∈ 𝒫 𝐽 ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) ) |
| 136 | 7 | snssd | ⊢ ( 𝜑 → { 𝐴 } ⊆ 𝑋 ) |
| 137 | 29 136 | unssd | ⊢ ( 𝜑 → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ 𝑋 ) |
| 138 | 137 55 | sseqtrd | ⊢ ( 𝜑 → ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝐽 ) |
| 139 | 57 | cmpsub | ⊢ ( ( 𝐽 ∈ Top ∧ ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝐽 ) → ( ( 𝐽 ↾t ( ran 𝐹 ∪ { 𝐴 } ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) ) ) |
| 140 | 53 138 139 | syl2anc | ⊢ ( 𝜑 → ( ( 𝐽 ↾t ( ran 𝐹 ∪ { 𝐴 } ) ) ∈ Comp ↔ ∀ 𝑢 ∈ 𝒫 𝐽 ( ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑢 → ∃ 𝑣 ∈ ( 𝒫 𝑢 ∩ Fin ) ( ran 𝐹 ∪ { 𝐴 } ) ⊆ ∪ 𝑣 ) ) ) |
| 141 | 135 140 | mpbird | ⊢ ( 𝜑 → ( 𝐽 ↾t ( ran 𝐹 ∪ { 𝐴 } ) ) ∈ Comp ) |