This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A first-countable space is compactly generated. (Contributed by Mario Carneiro, 21-Mar-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | 1stckgen | ⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | 1stctop | ⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ Top ) | |
| 2 | difss | ⊢ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 | |
| 3 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 4 | 3 | 1stcelcls | ⊢ ( ( 𝐽 ∈ 1stω ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
| 5 | 2 4 | mpan2 | ⊢ ( 𝐽 ∈ 1stω → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
| 6 | 5 | adantr | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ↔ ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ) |
| 7 | 1 | adantr | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝐽 ∈ Top ) |
| 8 | 7 | adantr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝐽 ∈ Top ) |
| 9 | toptopon2 | ⊢ ( 𝐽 ∈ Top ↔ 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) | |
| 10 | 8 9 | sylib | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ) |
| 11 | simprr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) | |
| 12 | lmcl | ⊢ ( ( 𝐽 ∈ ( TopOn ‘ ∪ 𝐽 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ∪ 𝐽 ) | |
| 13 | 10 11 12 | syl2anc | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ∪ 𝐽 ) |
| 14 | nnuz | ⊢ ℕ = ( ℤ≥ ‘ 1 ) | |
| 15 | vex | ⊢ 𝑓 ∈ V | |
| 16 | 15 | rnex | ⊢ ran 𝑓 ∈ V |
| 17 | vsnex | ⊢ { 𝑦 } ∈ V | |
| 18 | 16 17 | unex | ⊢ ( ran 𝑓 ∪ { 𝑦 } ) ∈ V |
| 19 | resttop | ⊢ ( ( 𝐽 ∈ Top ∧ ( ran 𝑓 ∪ { 𝑦 } ) ∈ V ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ) | |
| 20 | 8 18 19 | sylancl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ) |
| 21 | toptopon2 | ⊢ ( ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ↔ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( TopOn ‘ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) | |
| 22 | 20 21 | sylib | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( TopOn ‘ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 23 | 1zzd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 1 ∈ ℤ ) | |
| 24 | eqid | ⊢ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) = ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) | |
| 25 | 18 | a1i | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) ∈ V ) |
| 26 | ssun2 | ⊢ { 𝑦 } ⊆ ( ran 𝑓 ∪ { 𝑦 } ) | |
| 27 | vex | ⊢ 𝑦 ∈ V | |
| 28 | 27 | snss | ⊢ ( 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) ↔ { 𝑦 } ⊆ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 29 | 26 28 | mpbir | ⊢ 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) |
| 30 | 29 | a1i | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 31 | ffn | ⊢ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) → 𝑓 Fn ℕ ) | |
| 32 | 31 | ad2antrl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 Fn ℕ ) |
| 33 | dffn3 | ⊢ ( 𝑓 Fn ℕ ↔ 𝑓 : ℕ ⟶ ran 𝑓 ) | |
| 34 | 32 33 | sylib | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ran 𝑓 ) |
| 35 | ssun1 | ⊢ ran 𝑓 ⊆ ( ran 𝑓 ∪ { 𝑦 } ) | |
| 36 | fss | ⊢ ( ( 𝑓 : ℕ ⟶ ran 𝑓 ∧ ran 𝑓 ⊆ ( ran 𝑓 ∪ { 𝑦 } ) ) → 𝑓 : ℕ ⟶ ( ran 𝑓 ∪ { 𝑦 } ) ) | |
| 37 | 34 35 36 | sylancl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 38 | 24 14 25 8 30 23 37 | lmss | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ↔ 𝑓 ( ⇝𝑡 ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) 𝑦 ) ) |
| 39 | 11 38 | mpbid | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 ( ⇝𝑡 ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) 𝑦 ) |
| 40 | 37 | ffvelcdmda | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ran 𝑓 ∪ { 𝑦 } ) ) |
| 41 | simprl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ) | |
| 42 | 41 | ffvelcdmda | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 43 | 42 | eldifbd | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ¬ ( 𝑓 ‘ 𝑘 ) ∈ 𝑥 ) |
| 44 | 40 43 | eldifd | ⊢ ( ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) ∧ 𝑘 ∈ ℕ ) → ( 𝑓 ‘ 𝑘 ) ∈ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ) |
| 45 | difin | ⊢ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) = ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) | |
| 46 | frn | ⊢ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) → ran 𝑓 ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) | |
| 47 | 46 | ad2antrl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ran 𝑓 ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 48 | 47 | difss2d | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ran 𝑓 ⊆ ∪ 𝐽 ) |
| 49 | 13 | snssd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → { 𝑦 } ⊆ ∪ 𝐽 ) |
| 50 | 48 49 | unssd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) ⊆ ∪ 𝐽 ) |
| 51 | 3 | restuni | ⊢ ( ( 𝐽 ∈ Top ∧ ( ran 𝑓 ∪ { 𝑦 } ) ⊆ ∪ 𝐽 ) → ( ran 𝑓 ∪ { 𝑦 } ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 52 | 8 50 51 | syl2anc | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ran 𝑓 ∪ { 𝑦 } ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 53 | 52 | difeq1d | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) = ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ) |
| 54 | 45 53 | eqtr3id | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) = ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ) |
| 55 | incom | ⊢ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) = ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) | |
| 56 | simplr | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 57 | fss | ⊢ ( ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → 𝑓 : ℕ ⟶ ∪ 𝐽 ) | |
| 58 | 41 2 57 | sylancl | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑓 : ℕ ⟶ ∪ 𝐽 ) |
| 59 | 10 58 11 | 1stckgenlem | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Comp ) |
| 60 | kgeni | ⊢ ( ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ∧ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Comp ) → ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) | |
| 61 | 56 59 60 | syl2anc | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( 𝑥 ∩ ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 62 | 55 61 | eqeltrid | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) |
| 63 | eqid | ⊢ ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) = ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) | |
| 64 | 63 | opncld | ⊢ ( ( ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∈ Top ∧ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ∈ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) → ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 65 | 20 62 64 | syl2anc | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ∪ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ∖ ( ( ran 𝑓 ∪ { 𝑦 } ) ∩ 𝑥 ) ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 66 | 54 65 | eqeltrd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ∈ ( Clsd ‘ ( 𝐽 ↾t ( ran 𝑓 ∪ { 𝑦 } ) ) ) ) |
| 67 | 14 22 23 39 44 66 | lmcld | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ( ran 𝑓 ∪ { 𝑦 } ) ∖ 𝑥 ) ) |
| 68 | 67 | eldifbd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → ¬ 𝑦 ∈ 𝑥 ) |
| 69 | 13 68 | eldifd | ⊢ ( ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) ∧ ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 70 | 69 | ex | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 71 | 70 | exlimdv | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ∃ 𝑓 ( 𝑓 : ℕ ⟶ ( ∪ 𝐽 ∖ 𝑥 ) ∧ 𝑓 ( ⇝𝑡 ‘ 𝐽 ) 𝑦 ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 72 | 6 71 | sylbid | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑦 ∈ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) → 𝑦 ∈ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 73 | 72 | ssrdv | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) |
| 74 | 3 | iscld4 | ⊢ ( ( 𝐽 ∈ Top ∧ ( ∪ 𝐽 ∖ 𝑥 ) ⊆ ∪ 𝐽 ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 75 | 7 2 74 | sylancl | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ↔ ( ( cls ‘ 𝐽 ) ‘ ( ∪ 𝐽 ∖ 𝑥 ) ) ⊆ ( ∪ 𝐽 ∖ 𝑥 ) ) ) |
| 76 | 73 75 | mpbird | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) |
| 77 | elssuni | ⊢ ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ 𝐽 ) ) | |
| 78 | 77 | adantl | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 79 | 3 | kgenuni | ⊢ ( 𝐽 ∈ Top → ∪ 𝐽 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 80 | 7 79 | syl | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ∪ 𝐽 = ∪ ( 𝑘Gen ‘ 𝐽 ) ) |
| 81 | 78 80 | sseqtrrd | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ⊆ ∪ 𝐽 ) |
| 82 | 3 | isopn2 | ⊢ ( ( 𝐽 ∈ Top ∧ 𝑥 ⊆ ∪ 𝐽 ) → ( 𝑥 ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 83 | 7 81 82 | syl2anc | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → ( 𝑥 ∈ 𝐽 ↔ ( ∪ 𝐽 ∖ 𝑥 ) ∈ ( Clsd ‘ 𝐽 ) ) ) |
| 84 | 76 83 | mpbird | ⊢ ( ( 𝐽 ∈ 1stω ∧ 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) ) → 𝑥 ∈ 𝐽 ) |
| 85 | 84 | ex | ⊢ ( 𝐽 ∈ 1stω → ( 𝑥 ∈ ( 𝑘Gen ‘ 𝐽 ) → 𝑥 ∈ 𝐽 ) ) |
| 86 | 85 | ssrdv | ⊢ ( 𝐽 ∈ 1stω → ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) |
| 87 | iskgen2 | ⊢ ( 𝐽 ∈ ran 𝑘Gen ↔ ( 𝐽 ∈ Top ∧ ( 𝑘Gen ‘ 𝐽 ) ⊆ 𝐽 ) ) | |
| 88 | 1 86 87 | sylanbrc | ⊢ ( 𝐽 ∈ 1stω → 𝐽 ∈ ran 𝑘Gen ) |