This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A finite topology is compact. (Contributed by FL, 22-Dec-2008)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fincmp | ⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → 𝐽 ∈ Comp ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | elinel1 | ⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → 𝐽 ∈ Top ) | |
| 2 | elinel2 | ⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → 𝐽 ∈ Fin ) | |
| 3 | vex | ⊢ 𝑦 ∈ V | |
| 4 | 3 | pwid | ⊢ 𝑦 ∈ 𝒫 𝑦 |
| 5 | velpw | ⊢ ( 𝑦 ∈ 𝒫 𝐽 ↔ 𝑦 ⊆ 𝐽 ) | |
| 6 | ssfi | ⊢ ( ( 𝐽 ∈ Fin ∧ 𝑦 ⊆ 𝐽 ) → 𝑦 ∈ Fin ) | |
| 7 | 5 6 | sylan2b | ⊢ ( ( 𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽 ) → 𝑦 ∈ Fin ) |
| 8 | elin | ⊢ ( 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) ↔ ( 𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin ) ) | |
| 9 | unieq | ⊢ ( 𝑧 = 𝑦 → ∪ 𝑧 = ∪ 𝑦 ) | |
| 10 | 9 | rspceeqv | ⊢ ( ( 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) ∧ ∪ 𝐽 = ∪ 𝑦 ) → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) |
| 11 | 10 | ex | ⊢ ( 𝑦 ∈ ( 𝒫 𝑦 ∩ Fin ) → ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 12 | 8 11 | sylbir | ⊢ ( ( 𝑦 ∈ 𝒫 𝑦 ∧ 𝑦 ∈ Fin ) → ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 13 | 4 7 12 | sylancr | ⊢ ( ( 𝐽 ∈ Fin ∧ 𝑦 ∈ 𝒫 𝐽 ) → ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 14 | 13 | ralrimiva | ⊢ ( 𝐽 ∈ Fin → ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 15 | 2 14 | syl | ⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) |
| 16 | eqid | ⊢ ∪ 𝐽 = ∪ 𝐽 | |
| 17 | 16 | iscmp | ⊢ ( 𝐽 ∈ Comp ↔ ( 𝐽 ∈ Top ∧ ∀ 𝑦 ∈ 𝒫 𝐽 ( ∪ 𝐽 = ∪ 𝑦 → ∃ 𝑧 ∈ ( 𝒫 𝑦 ∩ Fin ) ∪ 𝐽 = ∪ 𝑧 ) ) ) |
| 18 | 1 15 17 | sylanbrc | ⊢ ( 𝐽 ∈ ( Top ∩ Fin ) → 𝐽 ∈ Comp ) |