This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The subspace topology is a collection of subsets of the restriction set. (Contributed by Mario Carneiro, 13-Aug-2015)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | restsspw | ⊢ ( 𝐽 ↾t 𝐴 ) ⊆ 𝒫 𝐴 |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | n0i | ⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ¬ ( 𝐽 ↾t 𝐴 ) = ∅ ) | |
| 2 | restfn | ⊢ ↾t Fn ( V × V ) | |
| 3 | fndm | ⊢ ( ↾t Fn ( V × V ) → dom ↾t = ( V × V ) ) | |
| 4 | 2 3 | ax-mp | ⊢ dom ↾t = ( V × V ) |
| 5 | 4 | ndmov | ⊢ ( ¬ ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝐽 ↾t 𝐴 ) = ∅ ) |
| 6 | 1 5 | nsyl2 | ⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) ) |
| 7 | elrest | ⊢ ( ( 𝐽 ∈ V ∧ 𝐴 ∈ V ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) | |
| 8 | 6 7 | syl | ⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) ↔ ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) ) ) |
| 9 | 8 | ibi | ⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) ) |
| 10 | inss2 | ⊢ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 | |
| 11 | sseq1 | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → ( 𝑥 ⊆ 𝐴 ↔ ( 𝑦 ∩ 𝐴 ) ⊆ 𝐴 ) ) | |
| 12 | 10 11 | mpbiri | ⊢ ( 𝑥 = ( 𝑦 ∩ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
| 13 | 12 | rexlimivw | ⊢ ( ∃ 𝑦 ∈ 𝐽 𝑥 = ( 𝑦 ∩ 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
| 14 | 9 13 | syl | ⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → 𝑥 ⊆ 𝐴 ) |
| 15 | velpw | ⊢ ( 𝑥 ∈ 𝒫 𝐴 ↔ 𝑥 ⊆ 𝐴 ) | |
| 16 | 14 15 | sylibr | ⊢ ( 𝑥 ∈ ( 𝐽 ↾t 𝐴 ) → 𝑥 ∈ 𝒫 𝐴 ) |
| 17 | 16 | ssriv | ⊢ ( 𝐽 ↾t 𝐴 ) ⊆ 𝒫 𝐴 |