This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Zero in a free module (ring constraint is stronger than necessary, but allows use of frlmlss ). (Contributed by Stefan O'Rear, 4-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | |- F = ( R freeLMod I ) |
|
| frlm0.z | |- .0. = ( 0g ` R ) |
||
| Assertion | frlm0 | |- ( ( R e. Ring /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | frlm0.z | |- .0. = ( 0g ` R ) |
|
| 3 | rlmlmod | |- ( R e. Ring -> ( ringLMod ` R ) e. LMod ) |
|
| 4 | eqid | |- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
|
| 5 | 4 | pwslmod | |- ( ( ( ringLMod ` R ) e. LMod /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) e. LMod ) |
| 6 | 3 5 | sylan | |- ( ( R e. Ring /\ I e. W ) -> ( ( ringLMod ` R ) ^s I ) e. LMod ) |
| 7 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 8 | eqid | |- ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) = ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) |
|
| 9 | 1 7 8 | frlmlss | |- ( ( R e. Ring /\ I e. W ) -> ( Base ` F ) e. ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 10 | 8 | lsssubg | |- ( ( ( ( ringLMod ` R ) ^s I ) e. LMod /\ ( Base ` F ) e. ( LSubSp ` ( ( ringLMod ` R ) ^s I ) ) ) -> ( Base ` F ) e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 11 | 6 9 10 | syl2anc | |- ( ( R e. Ring /\ I e. W ) -> ( Base ` F ) e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 12 | eqid | |- ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) |
|
| 13 | eqid | |- ( 0g ` ( ( ringLMod ` R ) ^s I ) ) = ( 0g ` ( ( ringLMod ` R ) ^s I ) ) |
|
| 14 | 12 13 | subg0 | |- ( ( Base ` F ) e. ( SubGrp ` ( ( ringLMod ` R ) ^s I ) ) -> ( 0g ` ( ( ringLMod ` R ) ^s I ) ) = ( 0g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 15 | 11 14 | syl | |- ( ( R e. Ring /\ I e. W ) -> ( 0g ` ( ( ringLMod ` R ) ^s I ) ) = ( 0g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 16 | lmodgrp | |- ( ( ringLMod ` R ) e. LMod -> ( ringLMod ` R ) e. Grp ) |
|
| 17 | grpmnd | |- ( ( ringLMod ` R ) e. Grp -> ( ringLMod ` R ) e. Mnd ) |
|
| 18 | 3 16 17 | 3syl | |- ( R e. Ring -> ( ringLMod ` R ) e. Mnd ) |
| 19 | rlm0 | |- ( 0g ` R ) = ( 0g ` ( ringLMod ` R ) ) |
|
| 20 | 2 19 | eqtri | |- .0. = ( 0g ` ( ringLMod ` R ) ) |
| 21 | 4 20 | pws0g | |- ( ( ( ringLMod ` R ) e. Mnd /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 22 | 18 21 | sylan | |- ( ( R e. Ring /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 23 | 1 7 | frlmpws | |- ( ( R e. Ring /\ I e. W ) -> F = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) |
| 24 | 23 | fveq2d | |- ( ( R e. Ring /\ I e. W ) -> ( 0g ` F ) = ( 0g ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 25 | 15 22 24 | 3eqtr4d | |- ( ( R e. Ring /\ I e. W ) -> ( I X. { .0. } ) = ( 0g ` F ) ) |