This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Condition for the support of a function operation to be a subset of the support of the left function term. (Contributed by Thierry Arnoux, 21-Jun-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | suppofssd.1 | |- ( ph -> A e. V ) |
|
| suppofssd.2 | |- ( ph -> Z e. B ) |
||
| suppofssd.3 | |- ( ph -> F : A --> B ) |
||
| suppofssd.4 | |- ( ph -> G : A --> B ) |
||
| suppofss1d.5 | |- ( ( ph /\ x e. B ) -> ( Z X x ) = Z ) |
||
| Assertion | suppofss1d | |- ( ph -> ( ( F oF X G ) supp Z ) C_ ( F supp Z ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | suppofssd.1 | |- ( ph -> A e. V ) |
|
| 2 | suppofssd.2 | |- ( ph -> Z e. B ) |
|
| 3 | suppofssd.3 | |- ( ph -> F : A --> B ) |
|
| 4 | suppofssd.4 | |- ( ph -> G : A --> B ) |
|
| 5 | suppofss1d.5 | |- ( ( ph /\ x e. B ) -> ( Z X x ) = Z ) |
|
| 6 | 3 | ffnd | |- ( ph -> F Fn A ) |
| 7 | 4 | ffnd | |- ( ph -> G Fn A ) |
| 8 | inidm | |- ( A i^i A ) = A |
|
| 9 | eqidd | |- ( ( ph /\ y e. A ) -> ( F ` y ) = ( F ` y ) ) |
|
| 10 | eqidd | |- ( ( ph /\ y e. A ) -> ( G ` y ) = ( G ` y ) ) |
|
| 11 | 6 7 1 1 8 9 10 | ofval | |- ( ( ph /\ y e. A ) -> ( ( F oF X G ) ` y ) = ( ( F ` y ) X ( G ` y ) ) ) |
| 12 | 11 | adantr | |- ( ( ( ph /\ y e. A ) /\ ( F ` y ) = Z ) -> ( ( F oF X G ) ` y ) = ( ( F ` y ) X ( G ` y ) ) ) |
| 13 | simpr | |- ( ( ( ph /\ y e. A ) /\ ( F ` y ) = Z ) -> ( F ` y ) = Z ) |
|
| 14 | 13 | oveq1d | |- ( ( ( ph /\ y e. A ) /\ ( F ` y ) = Z ) -> ( ( F ` y ) X ( G ` y ) ) = ( Z X ( G ` y ) ) ) |
| 15 | 5 | ralrimiva | |- ( ph -> A. x e. B ( Z X x ) = Z ) |
| 16 | 15 | adantr | |- ( ( ph /\ y e. A ) -> A. x e. B ( Z X x ) = Z ) |
| 17 | 4 | ffvelcdmda | |- ( ( ph /\ y e. A ) -> ( G ` y ) e. B ) |
| 18 | simpr | |- ( ( ( ph /\ y e. A ) /\ x = ( G ` y ) ) -> x = ( G ` y ) ) |
|
| 19 | 18 | oveq2d | |- ( ( ( ph /\ y e. A ) /\ x = ( G ` y ) ) -> ( Z X x ) = ( Z X ( G ` y ) ) ) |
| 20 | 19 | eqeq1d | |- ( ( ( ph /\ y e. A ) /\ x = ( G ` y ) ) -> ( ( Z X x ) = Z <-> ( Z X ( G ` y ) ) = Z ) ) |
| 21 | 17 20 | rspcdv | |- ( ( ph /\ y e. A ) -> ( A. x e. B ( Z X x ) = Z -> ( Z X ( G ` y ) ) = Z ) ) |
| 22 | 16 21 | mpd | |- ( ( ph /\ y e. A ) -> ( Z X ( G ` y ) ) = Z ) |
| 23 | 22 | adantr | |- ( ( ( ph /\ y e. A ) /\ ( F ` y ) = Z ) -> ( Z X ( G ` y ) ) = Z ) |
| 24 | 12 14 23 | 3eqtrd | |- ( ( ( ph /\ y e. A ) /\ ( F ` y ) = Z ) -> ( ( F oF X G ) ` y ) = Z ) |
| 25 | 24 | ex | |- ( ( ph /\ y e. A ) -> ( ( F ` y ) = Z -> ( ( F oF X G ) ` y ) = Z ) ) |
| 26 | 25 | ralrimiva | |- ( ph -> A. y e. A ( ( F ` y ) = Z -> ( ( F oF X G ) ` y ) = Z ) ) |
| 27 | 6 7 1 1 8 | offn | |- ( ph -> ( F oF X G ) Fn A ) |
| 28 | ssidd | |- ( ph -> A C_ A ) |
|
| 29 | suppfnss | |- ( ( ( ( F oF X G ) Fn A /\ F Fn A ) /\ ( A C_ A /\ A e. V /\ Z e. B ) ) -> ( A. y e. A ( ( F ` y ) = Z -> ( ( F oF X G ) ` y ) = Z ) -> ( ( F oF X G ) supp Z ) C_ ( F supp Z ) ) ) |
|
| 30 | 27 6 28 1 2 29 | syl23anc | |- ( ph -> ( A. y e. A ( ( F ` y ) = Z -> ( ( F oF X G ) ` y ) = Z ) -> ( ( F oF X G ) supp Z ) C_ ( F supp Z ) ) ) |
| 31 | 26 30 | mpd | |- ( ph -> ( ( F oF X G ) supp Z ) C_ ( F supp Z ) ) |