This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Elements of the free module are finitely supported. (Contributed by Stefan O'Rear, 3-Feb-2015) (Revised by Thierry Arnoux, 21-Jun-2019) (Proof shortened by AV, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | frlmval.f | |- F = ( R freeLMod I ) |
|
| frlmbasfsupp.z | |- .0. = ( 0g ` R ) |
||
| frlmbasfsupp.b | |- B = ( Base ` F ) |
||
| Assertion | frlmbasfsupp | |- ( ( I e. W /\ X e. B ) -> X finSupp .0. ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | frlmbasfsupp.z | |- .0. = ( 0g ` R ) |
|
| 3 | frlmbasfsupp.b | |- B = ( Base ` F ) |
|
| 4 | simpr | |- ( ( I e. W /\ X e. B ) -> X e. B ) |
|
| 5 | 1 3 | frlmrcl | |- ( X e. B -> R e. _V ) |
| 6 | simpl | |- ( ( I e. W /\ X e. B ) -> I e. W ) |
|
| 7 | eqid | |- ( Base ` R ) = ( Base ` R ) |
|
| 8 | 1 7 2 3 | frlmelbas | |- ( ( R e. _V /\ I e. W ) -> ( X e. B <-> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) ) |
| 9 | 5 6 8 | syl2an2 | |- ( ( I e. W /\ X e. B ) -> ( X e. B <-> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) ) |
| 10 | 4 9 | mpbid | |- ( ( I e. W /\ X e. B ) -> ( X e. ( ( Base ` R ) ^m I ) /\ X finSupp .0. ) ) |
| 11 | 10 | simprd | |- ( ( I e. W /\ X e. B ) -> X finSupp .0. ) |