This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The distance over generalized Euclidean spaces. Compare with df-rrn . (Contributed by Thierry Arnoux, 20-Jun-2019) (Proof shortened by AV, 20-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | rrxval.r | |- H = ( RR^ ` I ) |
|
| rrxbase.b | |- B = ( Base ` H ) |
||
| Assertion | rrxds | |- ( I e. V -> ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` H ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | rrxval.r | |- H = ( RR^ ` I ) |
|
| 2 | rrxbase.b | |- B = ( Base ` H ) |
|
| 3 | 1 | rrxval | |- ( I e. V -> H = ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
| 4 | 3 | fveq2d | |- ( I e. V -> ( dist ` H ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 5 | resrng | |- RRfld e. *Ring |
|
| 6 | srngring | |- ( RRfld e. *Ring -> RRfld e. Ring ) |
|
| 7 | 5 6 | ax-mp | |- RRfld e. Ring |
| 8 | eqid | |- ( RRfld freeLMod I ) = ( RRfld freeLMod I ) |
|
| 9 | 8 | frlmlmod | |- ( ( RRfld e. Ring /\ I e. V ) -> ( RRfld freeLMod I ) e. LMod ) |
| 10 | 7 9 | mpan | |- ( I e. V -> ( RRfld freeLMod I ) e. LMod ) |
| 11 | lmodgrp | |- ( ( RRfld freeLMod I ) e. LMod -> ( RRfld freeLMod I ) e. Grp ) |
|
| 12 | eqid | |- ( toCPreHil ` ( RRfld freeLMod I ) ) = ( toCPreHil ` ( RRfld freeLMod I ) ) |
|
| 13 | eqid | |- ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) |
|
| 14 | eqid | |- ( -g ` ( RRfld freeLMod I ) ) = ( -g ` ( RRfld freeLMod I ) ) |
|
| 15 | 12 13 14 | tcphds | |- ( ( RRfld freeLMod I ) e. Grp -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 16 | 10 11 15 | 3syl | |- ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( dist ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 17 | eqid | |- ( Base ` ( RRfld freeLMod I ) ) = ( Base ` ( RRfld freeLMod I ) ) |
|
| 18 | 17 14 | grpsubf | |- ( ( RRfld freeLMod I ) e. Grp -> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) |
| 19 | 10 11 18 | 3syl | |- ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) |
| 20 | 1 2 | rrxbase | |- ( I e. V -> B = { h e. ( RR ^m I ) | h finSupp 0 } ) |
| 21 | rebase | |- RR = ( Base ` RRfld ) |
|
| 22 | re0g | |- 0 = ( 0g ` RRfld ) |
|
| 23 | eqid | |- { h e. ( RR ^m I ) | h finSupp 0 } = { h e. ( RR ^m I ) | h finSupp 0 } |
|
| 24 | 8 21 22 23 | frlmbas | |- ( ( RRfld e. Ring /\ I e. V ) -> { h e. ( RR ^m I ) | h finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
| 25 | 7 24 | mpan | |- ( I e. V -> { h e. ( RR ^m I ) | h finSupp 0 } = ( Base ` ( RRfld freeLMod I ) ) ) |
| 26 | 20 25 | eqtrd | |- ( I e. V -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 27 | 26 | sqxpeqd | |- ( I e. V -> ( B X. B ) = ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) ) |
| 28 | 27 26 | feq23d | |- ( I e. V -> ( ( -g ` ( RRfld freeLMod I ) ) : ( B X. B ) --> B <-> ( -g ` ( RRfld freeLMod I ) ) : ( ( Base ` ( RRfld freeLMod I ) ) X. ( Base ` ( RRfld freeLMod I ) ) ) --> ( Base ` ( RRfld freeLMod I ) ) ) ) |
| 29 | 19 28 | mpbird | |- ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) : ( B X. B ) --> B ) |
| 30 | 29 | fovcdmda | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) e. B ) |
| 31 | 29 | ffnd | |- ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) Fn ( B X. B ) ) |
| 32 | fnov | |- ( ( -g ` ( RRfld freeLMod I ) ) Fn ( B X. B ) <-> ( -g ` ( RRfld freeLMod I ) ) = ( f e. B , g e. B |-> ( f ( -g ` ( RRfld freeLMod I ) ) g ) ) ) |
|
| 33 | 31 32 | sylib | |- ( I e. V -> ( -g ` ( RRfld freeLMod I ) ) = ( f e. B , g e. B |-> ( f ( -g ` ( RRfld freeLMod I ) ) g ) ) ) |
| 34 | 1 2 | rrxnm | |- ( I e. V -> ( h e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) ) = ( norm ` H ) ) |
| 35 | 3 | fveq2d | |- ( I e. V -> ( norm ` H ) = ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) ) |
| 36 | 34 35 | eqtr2d | |- ( I e. V -> ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) = ( h e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) ) ) |
| 37 | fveq1 | |- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( h ` x ) = ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ) |
|
| 38 | 37 | oveq1d | |- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( ( h ` x ) ^ 2 ) = ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) |
| 39 | 38 | mpteq2dv | |- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( x e. I |-> ( ( h ` x ) ^ 2 ) ) = ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) |
| 40 | 39 | oveq2d | |- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) = ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) |
| 41 | 40 | fveq2d | |- ( h = ( f ( -g ` ( RRfld freeLMod I ) ) g ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( h ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) |
| 42 | 30 33 36 41 | fmpoco | |- ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) ) |
| 43 | simp1 | |- ( ( I e. V /\ f e. B /\ g e. B ) -> I e. V ) |
|
| 44 | simprl | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> f e. B ) |
|
| 45 | 26 | adantr | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> B = ( Base ` ( RRfld freeLMod I ) ) ) |
| 46 | 44 45 | eleqtrd | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> f e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 47 | 46 | 3impb | |- ( ( I e. V /\ f e. B /\ g e. B ) -> f e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 48 | 8 21 17 | frlmbasmap | |- ( ( I e. V /\ f e. ( Base ` ( RRfld freeLMod I ) ) ) -> f e. ( RR ^m I ) ) |
| 49 | 43 47 48 | syl2anc | |- ( ( I e. V /\ f e. B /\ g e. B ) -> f e. ( RR ^m I ) ) |
| 50 | elmapi | |- ( f e. ( RR ^m I ) -> f : I --> RR ) |
|
| 51 | 49 50 | syl | |- ( ( I e. V /\ f e. B /\ g e. B ) -> f : I --> RR ) |
| 52 | 51 | ffnd | |- ( ( I e. V /\ f e. B /\ g e. B ) -> f Fn I ) |
| 53 | simprr | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> g e. B ) |
|
| 54 | 53 45 | eleqtrd | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> g e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 55 | 54 | 3impb | |- ( ( I e. V /\ f e. B /\ g e. B ) -> g e. ( Base ` ( RRfld freeLMod I ) ) ) |
| 56 | 8 21 17 | frlmbasmap | |- ( ( I e. V /\ g e. ( Base ` ( RRfld freeLMod I ) ) ) -> g e. ( RR ^m I ) ) |
| 57 | 43 55 56 | syl2anc | |- ( ( I e. V /\ f e. B /\ g e. B ) -> g e. ( RR ^m I ) ) |
| 58 | elmapi | |- ( g e. ( RR ^m I ) -> g : I --> RR ) |
|
| 59 | 57 58 | syl | |- ( ( I e. V /\ f e. B /\ g e. B ) -> g : I --> RR ) |
| 60 | 59 | ffnd | |- ( ( I e. V /\ f e. B /\ g e. B ) -> g Fn I ) |
| 61 | inidm | |- ( I i^i I ) = I |
|
| 62 | eqidd | |- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( f ` x ) = ( f ` x ) ) |
|
| 63 | eqidd | |- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( g ` x ) = ( g ` x ) ) |
|
| 64 | 52 60 43 43 61 62 63 | offval | |- ( ( I e. V /\ f e. B /\ g e. B ) -> ( f oF ( -g ` RRfld ) g ) = ( x e. I |-> ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) ) |
| 65 | 7 | a1i | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> RRfld e. Ring ) |
| 66 | simpl | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> I e. V ) |
|
| 67 | eqid | |- ( -g ` RRfld ) = ( -g ` RRfld ) |
|
| 68 | 8 17 65 66 46 54 67 14 | frlmsubgval | |- ( ( I e. V /\ ( f e. B /\ g e. B ) ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( f oF ( -g ` RRfld ) g ) ) |
| 69 | 68 | 3impb | |- ( ( I e. V /\ f e. B /\ g e. B ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( f oF ( -g ` RRfld ) g ) ) |
| 70 | 51 | ffvelcdmda | |- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( f ` x ) e. RR ) |
| 71 | 59 | ffvelcdmda | |- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( g ` x ) e. RR ) |
| 72 | 67 | resubgval | |- ( ( ( f ` x ) e. RR /\ ( g ` x ) e. RR ) -> ( ( f ` x ) - ( g ` x ) ) = ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) |
| 73 | 70 71 72 | syl2anc | |- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ` x ) - ( g ` x ) ) = ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) |
| 74 | 73 | mpteq2dva | |- ( ( I e. V /\ f e. B /\ g e. B ) -> ( x e. I |-> ( ( f ` x ) - ( g ` x ) ) ) = ( x e. I |-> ( ( f ` x ) ( -g ` RRfld ) ( g ` x ) ) ) ) |
| 75 | 64 69 74 | 3eqtr4d | |- ( ( I e. V /\ f e. B /\ g e. B ) -> ( f ( -g ` ( RRfld freeLMod I ) ) g ) = ( x e. I |-> ( ( f ` x ) - ( g ` x ) ) ) ) |
| 76 | 70 71 | resubcld | |- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ` x ) - ( g ` x ) ) e. RR ) |
| 77 | 75 76 | fvmpt2d | |- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) = ( ( f ` x ) - ( g ` x ) ) ) |
| 78 | 77 | oveq1d | |- ( ( ( I e. V /\ f e. B /\ g e. B ) /\ x e. I ) -> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) = ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) |
| 79 | 78 | mpteq2dva | |- ( ( I e. V /\ f e. B /\ g e. B ) -> ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) = ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) |
| 80 | 79 | oveq2d | |- ( ( I e. V /\ f e. B /\ g e. B ) -> ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) = ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) |
| 81 | 80 | fveq2d | |- ( ( I e. V /\ f e. B /\ g e. B ) -> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) = ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) |
| 82 | 81 | mpoeq3dva | |- ( I e. V -> ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ( -g ` ( RRfld freeLMod I ) ) g ) ` x ) ^ 2 ) ) ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) |
| 83 | 42 82 | eqtrd | |- ( I e. V -> ( ( norm ` ( toCPreHil ` ( RRfld freeLMod I ) ) ) o. ( -g ` ( RRfld freeLMod I ) ) ) = ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) ) |
| 84 | 4 16 83 | 3eqtr2rd | |- ( I e. V -> ( f e. B , g e. B |-> ( sqrt ` ( RRfld gsum ( x e. I |-> ( ( ( f ` x ) - ( g ` x ) ) ^ 2 ) ) ) ) ) = ( dist ` H ) ) |