This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: A constant function expressed in terms of its functionality, domain, and value. See also fconst2 . (Contributed by NM, 27-Aug-2004) (Proof shortened by OpenAI, 25-Mar-2020)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fconstfv | |- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) = B ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | ffnfv | |- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) e. { B } ) ) |
|
| 2 | fvex | |- ( F ` x ) e. _V |
|
| 3 | 2 | elsn | |- ( ( F ` x ) e. { B } <-> ( F ` x ) = B ) |
| 4 | 3 | ralbii | |- ( A. x e. A ( F ` x ) e. { B } <-> A. x e. A ( F ` x ) = B ) |
| 5 | 4 | anbi2i | |- ( ( F Fn A /\ A. x e. A ( F ` x ) e. { B } ) <-> ( F Fn A /\ A. x e. A ( F ` x ) = B ) ) |
| 6 | 1 5 | bitri | |- ( F : A --> { B } <-> ( F Fn A /\ A. x e. A ( F ` x ) = B ) ) |