This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The group sum over the real numbers, expressed as a finite sum. (Contributed by Thierry Arnoux, 22-Jun-2019) (Proof shortened by AV, 19-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | regsumsupp | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( RRfld gsum F ) = sum_ x e. ( F supp 0 ) ( F ` x ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | cnfldbas | |- CC = ( Base ` CCfld ) |
|
| 2 | cnfld0 | |- 0 = ( 0g ` CCfld ) |
|
| 3 | cnring | |- CCfld e. Ring |
|
| 4 | ringcmn | |- ( CCfld e. Ring -> CCfld e. CMnd ) |
|
| 5 | 3 4 | mp1i | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> CCfld e. CMnd ) |
| 6 | simp3 | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> I e. V ) |
|
| 7 | simp1 | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> F : I --> RR ) |
|
| 8 | ax-resscn | |- RR C_ CC |
|
| 9 | fss | |- ( ( F : I --> RR /\ RR C_ CC ) -> F : I --> CC ) |
|
| 10 | 7 8 9 | sylancl | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> F : I --> CC ) |
| 11 | ssidd | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( F supp 0 ) C_ ( F supp 0 ) ) |
|
| 12 | simp2 | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> F finSupp 0 ) |
|
| 13 | 1 2 5 6 10 11 12 | gsumres | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( CCfld gsum ( F |` ( F supp 0 ) ) ) = ( CCfld gsum F ) ) |
| 14 | cnfldadd | |- + = ( +g ` CCfld ) |
|
| 15 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 16 | 8 | a1i | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> RR C_ CC ) |
| 17 | 0red | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> 0 e. RR ) |
|
| 18 | simpr | |- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. CC ) -> x e. CC ) |
|
| 19 | 18 | addlidd | |- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. CC ) -> ( 0 + x ) = x ) |
| 20 | 18 | addridd | |- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. CC ) -> ( x + 0 ) = x ) |
| 21 | 19 20 | jca | |- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. CC ) -> ( ( 0 + x ) = x /\ ( x + 0 ) = x ) ) |
| 22 | 1 14 15 5 6 16 7 17 21 | gsumress | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( CCfld gsum F ) = ( RRfld gsum F ) ) |
| 23 | 13 22 | eqtr2d | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( RRfld gsum F ) = ( CCfld gsum ( F |` ( F supp 0 ) ) ) ) |
| 24 | suppssdm | |- ( F supp 0 ) C_ dom F |
|
| 25 | 24 7 | fssdm | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( F supp 0 ) C_ I ) |
| 26 | 7 25 | feqresmpt | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( F |` ( F supp 0 ) ) = ( x e. ( F supp 0 ) |-> ( F ` x ) ) ) |
| 27 | 26 | oveq2d | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( CCfld gsum ( F |` ( F supp 0 ) ) ) = ( CCfld gsum ( x e. ( F supp 0 ) |-> ( F ` x ) ) ) ) |
| 28 | 12 | fsuppimpd | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( F supp 0 ) e. Fin ) |
| 29 | simpl1 | |- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. ( F supp 0 ) ) -> F : I --> RR ) |
|
| 30 | 25 | sselda | |- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. ( F supp 0 ) ) -> x e. I ) |
| 31 | 29 30 | ffvelcdmd | |- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. ( F supp 0 ) ) -> ( F ` x ) e. RR ) |
| 32 | 8 31 | sselid | |- ( ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) /\ x e. ( F supp 0 ) ) -> ( F ` x ) e. CC ) |
| 33 | 28 32 | gsumfsum | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( CCfld gsum ( x e. ( F supp 0 ) |-> ( F ` x ) ) ) = sum_ x e. ( F supp 0 ) ( F ` x ) ) |
| 34 | 23 27 33 | 3eqtrd | |- ( ( F : I --> RR /\ F finSupp 0 /\ I e. V ) -> ( RRfld gsum F ) = sum_ x e. ( F supp 0 ) ( F ` x ) ) |