This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: If the support of a function is a subset of the support of a finitely supported function, the function is finitely supported. (Contributed by AV, 2-Jul-2019) (Proof shortened by AV, 15-Jul-2019)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | fsuppsssupp | |- ( ( ( G e. V /\ Fun G ) /\ ( F finSupp Z /\ ( G supp Z ) C_ ( F supp Z ) ) ) -> G finSupp Z ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | simpll | |- ( ( ( G e. V /\ Fun G ) /\ ( F finSupp Z /\ ( G supp Z ) C_ ( F supp Z ) ) ) -> G e. V ) |
|
| 2 | simplr | |- ( ( ( G e. V /\ Fun G ) /\ ( F finSupp Z /\ ( G supp Z ) C_ ( F supp Z ) ) ) -> Fun G ) |
|
| 3 | relfsupp | |- Rel finSupp |
|
| 4 | 3 | brrelex2i | |- ( F finSupp Z -> Z e. _V ) |
| 5 | 4 | ad2antrl | |- ( ( ( G e. V /\ Fun G ) /\ ( F finSupp Z /\ ( G supp Z ) C_ ( F supp Z ) ) ) -> Z e. _V ) |
| 6 | id | |- ( F finSupp Z -> F finSupp Z ) |
|
| 7 | 6 | fsuppimpd | |- ( F finSupp Z -> ( F supp Z ) e. Fin ) |
| 8 | 7 | anim1i | |- ( ( F finSupp Z /\ ( G supp Z ) C_ ( F supp Z ) ) -> ( ( F supp Z ) e. Fin /\ ( G supp Z ) C_ ( F supp Z ) ) ) |
| 9 | 8 | adantl | |- ( ( ( G e. V /\ Fun G ) /\ ( F finSupp Z /\ ( G supp Z ) C_ ( F supp Z ) ) ) -> ( ( F supp Z ) e. Fin /\ ( G supp Z ) C_ ( F supp Z ) ) ) |
| 10 | suppssfifsupp | |- ( ( ( G e. V /\ Fun G /\ Z e. _V ) /\ ( ( F supp Z ) e. Fin /\ ( G supp Z ) C_ ( F supp Z ) ) ) -> G finSupp Z ) |
|
| 11 | 1 2 5 9 10 | syl31anc | |- ( ( ( G e. V /\ Fun G ) /\ ( F finSupp Z /\ ( G supp Z ) C_ ( F supp Z ) ) ) -> G finSupp Z ) |