This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The ring of scalars of a free module. (Contributed by Stefan O'Rear, 1-Feb-2015)
| Ref | Expression | ||
|---|---|---|---|
| Hypothesis | frlmval.f | |- F = ( R freeLMod I ) |
|
| Assertion | frlmsca | |- ( ( R e. V /\ I e. W ) -> R = ( Scalar ` F ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | frlmval.f | |- F = ( R freeLMod I ) |
|
| 2 | fvex | |- ( ringLMod ` R ) e. _V |
|
| 3 | eqid | |- ( ( ringLMod ` R ) ^s I ) = ( ( ringLMod ` R ) ^s I ) |
|
| 4 | eqid | |- ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ringLMod ` R ) ) |
|
| 5 | 3 4 | pwssca | |- ( ( ( ringLMod ` R ) e. _V /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 6 | 2 5 | mpan | |- ( I e. W -> ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 7 | 6 | adantl | |- ( ( R e. V /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) ) |
| 8 | fvex | |- ( Base ` F ) e. _V |
|
| 9 | eqid | |- ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) |
|
| 10 | eqid | |- ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) = ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) |
|
| 11 | 9 10 | resssca | |- ( ( Base ` F ) e. _V -> ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) = ( Scalar ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 12 | 8 11 | ax-mp | |- ( Scalar ` ( ( ringLMod ` R ) ^s I ) ) = ( Scalar ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) |
| 13 | 7 12 | eqtrdi | |- ( ( R e. V /\ I e. W ) -> ( Scalar ` ( ringLMod ` R ) ) = ( Scalar ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 14 | rlmsca | |- ( R e. V -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
|
| 15 | 14 | adantr | |- ( ( R e. V /\ I e. W ) -> R = ( Scalar ` ( ringLMod ` R ) ) ) |
| 16 | eqid | |- ( Base ` F ) = ( Base ` F ) |
|
| 17 | 1 16 | frlmpws | |- ( ( R e. V /\ I e. W ) -> F = ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) |
| 18 | 17 | fveq2d | |- ( ( R e. V /\ I e. W ) -> ( Scalar ` F ) = ( Scalar ` ( ( ( ringLMod ` R ) ^s I ) |`s ( Base ` F ) ) ) ) |
| 19 | 13 15 18 | 3eqtr4d | |- ( ( R e. V /\ I e. W ) -> R = ( Scalar ` F ) ) |