This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: The real numbers form a field. (Contributed by Thierry Arnoux, 1-Nov-2017)
| Ref | Expression | ||
|---|---|---|---|
| Assertion | refld | |- RRfld e. Field |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | resubdrg | |- ( RR e. ( SubRing ` CCfld ) /\ RRfld e. DivRing ) |
|
| 2 | 1 | simpri | |- RRfld e. DivRing |
| 3 | df-refld | |- RRfld = ( CCfld |`s RR ) |
|
| 4 | cncrng | |- CCfld e. CRing |
|
| 5 | 1 | simpli | |- RR e. ( SubRing ` CCfld ) |
| 6 | eqid | |- ( CCfld |`s RR ) = ( CCfld |`s RR ) |
|
| 7 | 6 | subrgcrng | |- ( ( CCfld e. CRing /\ RR e. ( SubRing ` CCfld ) ) -> ( CCfld |`s RR ) e. CRing ) |
| 8 | 4 5 7 | mp2an | |- ( CCfld |`s RR ) e. CRing |
| 9 | 3 8 | eqeltri | |- RRfld e. CRing |
| 10 | isfld | |- ( RRfld e. Field <-> ( RRfld e. DivRing /\ RRfld e. CRing ) ) |
|
| 11 | 2 9 10 | mpbir2an | |- RRfld e. Field |