This is an inofficial mirror of http://metamath.tirix.org for personal testing of a visualizer extension only.
Description: Specialization of the Extreme Value Theorem to a closed interval of RR . (Contributed by Mario Carneiro, 12-Aug-2014)
| Ref | Expression | ||
|---|---|---|---|
| Hypotheses | evthicc.1 | |- ( ph -> A e. RR ) |
|
| evthicc.2 | |- ( ph -> B e. RR ) |
||
| evthicc.3 | |- ( ph -> A <_ B ) |
||
| evthicc.4 | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
||
| Assertion | evthicc | |- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) ) ) |
| Step | Hyp | Ref | Expression |
|---|---|---|---|
| 1 | evthicc.1 | |- ( ph -> A e. RR ) |
|
| 2 | evthicc.2 | |- ( ph -> B e. RR ) |
|
| 3 | evthicc.3 | |- ( ph -> A <_ B ) |
|
| 4 | evthicc.4 | |- ( ph -> F e. ( ( A [,] B ) -cn-> RR ) ) |
|
| 5 | eqid | |- U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
|
| 6 | eqid | |- ( topGen ` ran (,) ) = ( topGen ` ran (,) ) |
|
| 7 | eqid | |- ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) |
|
| 8 | 6 7 | icccmp | |- ( ( A e. RR /\ B e. RR ) -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Comp ) |
| 9 | 1 2 8 | syl2anc | |- ( ph -> ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) e. Comp ) |
| 10 | iccssre | |- ( ( A e. RR /\ B e. RR ) -> ( A [,] B ) C_ RR ) |
|
| 11 | 1 2 10 | syl2anc | |- ( ph -> ( A [,] B ) C_ RR ) |
| 12 | ax-resscn | |- RR C_ CC |
|
| 13 | 11 12 | sstrdi | |- ( ph -> ( A [,] B ) C_ CC ) |
| 14 | eqid | |- ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) = ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) |
|
| 15 | eqid | |- ( ( abs o. - ) |` ( RR X. RR ) ) = ( ( abs o. - ) |` ( RR X. RR ) ) |
|
| 16 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) |
|
| 17 | eqid | |- ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
|
| 18 | 15 17 | tgioo | |- ( topGen ` ran (,) ) = ( MetOpen ` ( ( abs o. - ) |` ( RR X. RR ) ) ) |
| 19 | 14 15 16 18 | cncfmet | |- ( ( ( A [,] B ) C_ CC /\ RR C_ CC ) -> ( ( A [,] B ) -cn-> RR ) = ( ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) Cn ( topGen ` ran (,) ) ) ) |
| 20 | 13 12 19 | sylancl | |- ( ph -> ( ( A [,] B ) -cn-> RR ) = ( ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) Cn ( topGen ` ran (,) ) ) ) |
| 21 | 6 16 | resubmet | |- ( ( A [,] B ) C_ RR -> ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 22 | 11 21 | syl | |- ( ph -> ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) = ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 23 | 22 | oveq1d | |- ( ph -> ( ( MetOpen ` ( ( abs o. - ) |` ( ( A [,] B ) X. ( A [,] B ) ) ) ) Cn ( topGen ` ran (,) ) ) = ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( topGen ` ran (,) ) ) ) |
| 24 | 20 23 | eqtrd | |- ( ph -> ( ( A [,] B ) -cn-> RR ) = ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( topGen ` ran (,) ) ) ) |
| 25 | 4 24 | eleqtrd | |- ( ph -> F e. ( ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) Cn ( topGen ` ran (,) ) ) ) |
| 26 | retop | |- ( topGen ` ran (,) ) e. Top |
|
| 27 | uniretop | |- RR = U. ( topGen ` ran (,) ) |
|
| 28 | 27 | restuni | |- ( ( ( topGen ` ran (,) ) e. Top /\ ( A [,] B ) C_ RR ) -> ( A [,] B ) = U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 29 | 26 11 28 | sylancr | |- ( ph -> ( A [,] B ) = U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ) |
| 30 | 1 | rexrd | |- ( ph -> A e. RR* ) |
| 31 | 2 | rexrd | |- ( ph -> B e. RR* ) |
| 32 | lbicc2 | |- ( ( A e. RR* /\ B e. RR* /\ A <_ B ) -> A e. ( A [,] B ) ) |
|
| 33 | 30 31 3 32 | syl3anc | |- ( ph -> A e. ( A [,] B ) ) |
| 34 | 33 | ne0d | |- ( ph -> ( A [,] B ) =/= (/) ) |
| 35 | 29 34 | eqnetrrd | |- ( ph -> U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) =/= (/) ) |
| 36 | 5 6 9 25 35 | evth | |- ( ph -> E. x e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) A. y e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` y ) <_ ( F ` x ) ) |
| 37 | 29 | raleqdv | |- ( ph -> ( A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) <-> A. y e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` y ) <_ ( F ` x ) ) ) |
| 38 | 29 37 | rexeqbidv | |- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) <-> E. x e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) A. y e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` y ) <_ ( F ` x ) ) ) |
| 39 | 36 38 | mpbird | |- ( ph -> E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) ) |
| 40 | 5 6 9 25 35 | evth2 | |- ( ph -> E. z e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) A. w e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` z ) <_ ( F ` w ) ) |
| 41 | 29 | raleqdv | |- ( ph -> ( A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) <-> A. w e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` z ) <_ ( F ` w ) ) ) |
| 42 | 29 41 | rexeqbidv | |- ( ph -> ( E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) <-> E. z e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) A. w e. U. ( ( topGen ` ran (,) ) |`t ( A [,] B ) ) ( F ` z ) <_ ( F ` w ) ) ) |
| 43 | 40 42 | mpbird | |- ( ph -> E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) ) |
| 44 | 39 43 | jca | |- ( ph -> ( E. x e. ( A [,] B ) A. y e. ( A [,] B ) ( F ` y ) <_ ( F ` x ) /\ E. z e. ( A [,] B ) A. w e. ( A [,] B ) ( F ` z ) <_ ( F ` w ) ) ) |